Babel / Optimus /code /examples /big_ae /run_lm_causal_pretraining.py
rynmurdock's picture
init
c5ca37a
raw
history blame
37.2 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import pdb
import argparse
import glob
import logging
import os
import pickle
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule,
BertConfig, BertModel, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertModel, BertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer)
}
class TextDataset(Dataset):
def __init__(self, tokenizer, file_path='train', block_size=512):
assert os.path.isfile(file_path)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(directory, f'cached_lm_{block_size}_{filename}')
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, 'rb') as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
self.examples = []
with open(file_path, encoding="utf-8") as f:
text = f.read()
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
while len(tokenized_text) >= block_size: # Truncate in block of block_size
self.examples.append(tokenizer.add_special_tokens_single_sentence(tokenized_text[:block_size]))
tokenized_text = tokenized_text[block_size:]
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, 'wb') as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item])
class TextDataset_2Tokenizers(Dataset):
def __init__(self, tokenizers, file_path='train', block_size=512):
assert os.path.isfile(file_path)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(directory, f'cached_lm_gpt_bert_{block_size}_{filename}')
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, 'rb') as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
with open(file_path, encoding="utf-8") as f:
text = f.read()
# pdb.set_trace()
self.examples = []
# Chunyuan: divide the linguistic text into the same length, then different tokenization schemes are applied
while len(text) >= block_size: # Truncate in block of block_size
tokenized_text0 = tokenizers[0].convert_tokens_to_ids(tokenizers[0].tokenize(text[:block_size]))
tokenized_text0 = tokenizers[0].add_special_tokens_single_sentence(tokenized_text0)
tokenized_text0_length = len(tokenized_text0)
pad_token=tokenizers[0].convert_tokens_to_ids([tokenizers[0].pad_token])[0]
tokenized_text0 = tokenized_text0 + ([pad_token] * (block_size - tokenized_text0_length) ) # Pad up to the sequence length.
assert len(tokenized_text0) == block_size
tokenized_text1 = tokenizers[1].convert_tokens_to_ids(tokenizers[1].tokenize(text[:block_size]))
tokenized_text1 = tokenizers[1].add_special_tokens_single_sentence(tokenized_text1)
tokenized_text1_length = len(tokenized_text1)
pad_token=tokenizers[1].convert_tokens_to_ids([tokenizers[1].pad_token])[0]
tokenized_text1 = tokenized_text1 + ([pad_token] * (block_size - tokenized_text1_length) ) # Pad up to the sequence length.
assert len(tokenized_text1) == block_size
self.examples.append([tokenized_text0, tokenized_text0_length, tokenized_text1, tokenized_text1_length])
text = text[block_size:]
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, 'wb') as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
# pdb.set_trace()
# Convert to Tensors and build dataset
tokenized_text0= torch.tensor(self.examples[item][0], dtype=torch.long)
tokenized_text1= torch.tensor(self.examples[item][2], dtype=torch.long)
tokenized_text_lengths = torch.tensor([self.examples[item][1], self.examples[item][3]], dtype=torch.long)
# pdb.set_trace()
return (tokenized_text0, tokenized_text1, tokenized_text_lengths)
def load_and_cache_examples(args, tokenizer, evaluate=False):
if isinstance(tokenizer, list):
dataset = TextDataset_2Tokenizers(tokenizer, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
else:
dataset = TextDataset(tokenizer, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
return dataset
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def mask_tokens(inputs, tokenizer, args):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8)
labels[masked_indices==1] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced
indices_random = indices_random
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def train(args, train_dataset, model_encoder, model_decoder, encoder_tokenizer, decoder_tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_encoder_parameters = [
{'params': [p for n, p in model_encoder.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model_encoder.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer_grouped_decoder_parameters = [
{'params': [p for n, p in model_decoder.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model_decoder.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer_encoder = AdamW(optimizer_grouped_encoder_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
optimizer_decoder = AdamW(optimizer_grouped_decoder_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler_encoder = WarmupLinearSchedule(optimizer_encoder, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler_decoder = WarmupLinearSchedule(optimizer_decoder, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model_encoder, optimizer_encoder = amp.initialize(model_encoder, optimizer_encoder, opt_level=args.fp16_opt_level)
model_decoder, optimizer_decoder = amp.initialize(model_decoder, optimizer_decoder, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model_encoder = torch.nn.DataParallel(model_encoder)
model_decoder = torch.nn.DataParallel(model_decoder)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model_encoder = torch.nn.parallel.DistributedDataParallel(model_encoder, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
model_decoder = torch.nn.parallel.DistributedDataParallel(model_decoder, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model_encoder.zero_grad()
model_decoder.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
tokenized_text0, tokenized_text1, tokenized_text_lengths = batch
# tokenized_text0 = tokenized_text0.to(args.device)
# tokenized_text1 = tokenized_text1.to(args.device)
# prepare input-output data for reconstruction
inputs, labels = mask_tokens(tokenized_text0, encoder_tokenizer, args) if args.mlm else (tokenized_text0, tokenized_text1)
labels = tokenized_text1
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model_encoder.train()
model_decoder.train()
# Encoding
outputs = model_encoder(inputs)
pooled_hidden_fea = outputs[1] # model outputs are always tuple in pytorch-transformers (see doc)
# Decoding
outputs = model_decoder(input_ids=tokenized_text1, past=None, labels=labels)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer_encoder), args.max_grad_norm)
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer_decoder), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model_encoder.parameters(), args.max_grad_norm)
torch.nn.utils.clip_grad_norm_(model_decoder.parameters(), args.max_grad_norm)
optimizer_encoder.step()
optimizer_decoder.step()
scheduler_encoder.step() # Update learning rate schedule
scheduler_decoder.step()
model_encoder.zero_grad()
model_decoder.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model_encoder, model_decoder, encoder_tokenizer, decoder_tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr_encoder', scheduler_encoder.get_lr()[0], global_step)
tb_writer.add_scalar('lr_decoder', scheduler_decoder.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_encoder_dir = os.path.join(args.output_dir, 'checkpoint-encoder-{}'.format(global_step))
output_decoder_dir = os.path.join(args.output_dir, 'checkpoint-decoder-{}'.format(global_step))
if not os.path.exists(output_encoder_dir):
os.makedirs(output_encoder_dir)
if not os.path.exists(output_decoder_dir):
os.makedirs(output_decoder_dir)
model_encoder_to_save = model_encoder.module if hasattr(model_encoder, 'module') else model_encoder # Take care of distributed/parallel training
model_decoder_to_save = model_decoder.module if hasattr(model_decoder, 'module') else model_decoder # Take care of distributed/parallel training
model_encoder_to_save.save_pretrained(output_encoder_dir)
torch.save(args, os.path.join(output_encoder_dir, 'training_encoder_args.bin'))
model_decoder_to_save.save_pretrained(output_decoder_dir)
torch.save(args, os.path.join(output_decoder_dir, 'training_decoder_args.bin'))
logger.info("Saving model checkpoint to %s", output_encoder_dir)
logger.info("Saving model checkpoint to %s", output_decoder_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model_encoder, model_decoder, encoder_tokenizer, decoder_tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, [encoder_tokenizer, decoder_tokenizer], evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model_encoder.eval()
model_decoder.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
# pdb.set_trace()
tokenized_text0, tokenized_text1, tokenized_text_lengths = batch
# prepare input-output data for evaluation
inputs, labels = tokenized_text0, tokenized_text1
tokenized_text1 = tokenized_text1.to(args.device)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad():
# Encoding
outputs = model_encoder(inputs)
pooled_hidden_fea = outputs[1] # model outputs are always tuple in pytorch-transformers (see doc)
# Decoding
outputs = model_decoder(input_ids=tokenized_text1, past=None, labels=labels)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {
"perplexity": perplexity
}
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
## Encoder options
parser.add_argument("--encoder_model_type", default="bert", type=str,
help="The encoder model architecture to be fine-tuned.")
parser.add_argument("--encoder_model_name_or_path", default="bert-base-cased", type=str,
help="The encoder model checkpoint for weights initialization.")
parser.add_argument("--encoder_config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--encoder_tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
## Decoder options
parser.add_argument("--decoder_model_type", default="gpt2", type=str,
help="The decoder model architecture to be fine-tuned.")
parser.add_argument("--decoder_model_name_or_path", default="bert-base-cased", type=str,
help="The decoder model checkpoint for weights initialization.")
parser.add_argument("--decoder_config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--decoder_tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
## Objective functions
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
# Training Schedules
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
## IO: Logging and Saving
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
# Precision & Distributed Training
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if args.decoder_model_type in ["bert", "roberta"] and not args.mlm:
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling).")
if args.eval_data_file is None and args.do_eval:
raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
## Encoder
encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES[args.encoder_model_type]
encoder_config = encoder_config_class.from_pretrained(args.encoder_config_name if args.encoder_config_name else args.encoder_model_name_or_path)
tokenizer_encoder = encoder_tokenizer_class.from_pretrained(args.encoder_tokenizer_name if args.encoder_tokenizer_name else args.encoder_model_name_or_path, do_lower_case=args.do_lower_case)
if args.block_size <= 0:
args.block_size = tokenizer_encoder.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer_encoder.max_len_single_sentence)
model_encoder = encoder_model_class.from_pretrained(args.encoder_model_name_or_path, from_tf=bool('.ckpt' in args.encoder_model_name_or_path), config=encoder_config)
model_encoder.to(args.device)
## Decoder
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES[args.decoder_model_type]
decoder_config = decoder_config_class.from_pretrained(args.decoder_config_name if args.decoder_config_name else args.decoder_model_name_or_path)
tokenizer_decoder = decoder_tokenizer_class.from_pretrained(args.decoder_tokenizer_name if args.decoder_tokenizer_name else args.decoder_model_name_or_path, do_lower_case=args.do_lower_case)
if args.block_size <= 0:
args.block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer_decoder.max_len_single_sentence)
model_decoder = decoder_model_class.from_pretrained(args.decoder_model_name_or_path, from_tf=bool('.ckpt' in args.decoder_model_name_or_path), config=decoder_config)
# Chunyuan: Add Padding token to GPT2
special_tokens_dict = {'pad_token': '<PAD>'}
num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict)
print('We have added', num_added_toks, 'tokens')
model_decoder.resize_token_embeddings(len(tokenizer_decoder)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
assert tokenizer_decoder.pad_token == '<PAD>'
model_decoder.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
global_step= 0
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_dataset = load_and_cache_examples(args, [tokenizer_encoder, tokenizer_decoder], evaluate=False)
if args.local_rank == 0:
torch.distributed.barrier()
global_step, tr_loss = train(args, train_dataset, model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
# Save model checkpoint
output_encoder_dir = os.path.join(args.output_dir, 'checkpoint-encoder-{}'.format(global_step))
output_decoder_dir = os.path.join(args.output_dir, 'checkpoint-decoder-{}'.format(global_step))
if not os.path.exists(output_encoder_dir) and args.local_rank in [-1, 0]:
os.makedirs(output_encoder_dir)
if not os.path.exists(output_decoder_dir) and args.local_rank in [-1, 0]:
os.makedirs(output_decoder_dir)
logger.info("Saving encoder model checkpoint to %s", output_encoder_dir)
logger.info("Saving decoder model checkpoint to %s", output_decoder_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_encoder_to_save = model_encoder.module if hasattr(model_encoder, 'module') else model_encoder # Take care of distributed/parallel training
model_decoder_to_save = model_decoder.module if hasattr(model_decoder, 'module') else model_decoder # Take care of distributed/parallel training
# Good practice: save your training arguments together with the trained model
model_encoder_to_save.save_pretrained(output_encoder_dir)
torch.save(args, os.path.join(output_encoder_dir, 'training_encoder_args.bin'))
model_decoder_to_save.save_pretrained(output_decoder_dir)
torch.save(args, os.path.join(output_decoder_dir, 'training_decoder_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model_encoder = encoder_model_class.from_pretrained(output_encoder_dir)
tokenizer_encoder = encoder_tokenizer_class.from_pretrained(output_encoder_dir, do_lower_case=args.do_lower_case)
model_encoder.to(args.device)
# Load a trained model and vocabulary that you have fine-tuned
model_decoder = decoder_model_class.from_pretrained(output_decoder_dir)
tokenizer_decoder = decoder_tokenizer_class.from_pretrained(output_decoder_dir, do_lower_case=args.do_lower_case)
model_decoder.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
global_step= 881
output_encoder_dir = os.path.join(args.output_dir, 'checkpoint-encoder-{}'.format(global_step))
output_decoder_dir = os.path.join(args.output_dir, 'checkpoint-decoder-{}'.format(global_step))
checkpoints = [ [output_encoder_dir, output_decoder_dir] ]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint[0].split('-')[-1] if len(checkpoints) > 1 else ""
model_encoder = encoder_model_class.from_pretrained(checkpoint[0])
model_encoder.to(args.device)
model_decoder = decoder_model_class.from_pretrained(checkpoint[1])
model_decoder.to(args.device)
result = evaluate(args, model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()