File size: 8,267 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
from shutil import copyfile

import unicodedata
import six

from .tokenization_utils import PreTrainedTokenizer

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-spiece.model",
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'xlnet-base-cased': None,
    'xlnet-large-cased': None,
}

SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4

class XLNetTokenizer(PreTrainedTokenizer):
    """
        SentencePiece based tokenizer. Peculiarities:

            - requires `SentencePiece <https://github.com/google/sentencepiece>`_
    """
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(self, vocab_file,
                 do_lower_case=False, remove_space=True, keep_accents=False,
                 bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>",
                 pad_token="<pad>", cls_token="<cls>", mask_token="<mask>",
                 additional_special_tokens=["<eop>", "<eod>"], **kwargs):
        super(XLNetTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token,
                                             unk_token=unk_token, sep_token=sep_token,
                                             pad_token=pad_token, cls_token=cls_token,
                                             mask_token=mask_token, additional_special_tokens=
                                             additional_special_tokens, **kwargs)

        self.max_len_single_sentence = self.max_len - 2  # take into account special tokens
        self.max_len_sentences_pair = self.max_len - 3  # take into account special tokens

        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")

        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)

    @property
    def vocab_size(self):
        return len(self.sp_model)

    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(self.vocab_file)

    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = ' '.join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if six.PY2 and isinstance(outputs, str):
            outputs = outputs.decode('utf-8')

        if not self.keep_accents:
            outputs = unicodedata.normalize('NFKD', outputs)
            outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

    def _tokenize(self, text, return_unicode=True, sample=False):
        """ Tokenize a string.
            return_unicode is used only for py2
        """
        text = self.preprocess_text(text)
        # note(zhiliny): in some systems, sentencepiece only accepts str for py2
        if six.PY2 and isinstance(text, unicode):
            text = text.encode('utf-8')

        if not sample:
            pieces = self.sp_model.EncodeAsPieces(text)
        else:
            pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, ''))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        # note(zhiliny): convert back to unicode for py2
        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in new_pieces:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            new_pieces = ret_pieces

        return new_pieces

    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.sp_model.PieceToId(token)

    def _convert_id_to_token(self, index, return_unicode=True):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        if six.PY2 and return_unicode and isinstance(token, str):
            token = token.decode('utf-8')
        return token

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (strings for sub-words) in a single string."""
        out_string = ''.join(tokens).replace(SPIECE_UNDERLINE, ' ').strip()
        return out_string

    def add_special_tokens_single_sentence(self, token_ids):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLNet sequence pair has the following format: A [SEP] B [SEP][CLS]
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        return token_ids + sep + cls

    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLNet sequence has the following format: X [SEP][CLS]
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        return token_ids_0 + sep + token_ids_1 + sep + cls

    def save_vocabulary(self, save_directory):
        """ Save the sentencepiece vocabulary (copy original file) and special tokens file
            to a directory.
        """
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
            return
        out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
            copyfile(self.vocab_file, out_vocab_file)

        return (out_vocab_file,)