File size: 7,177 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging

from .tokenization_bert import BertTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_transfo_xl import TransfoXLTokenizer
from .tokenization_xlnet import XLNetTokenizer
from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_distilbert import DistilBertTokenizer

logger = logging.getLogger(__name__)

class AutoTokenizer(object):
    r""":class:`~pytorch_transformers.AutoTokenizer` is a generic tokenizer class
        that will be instantiated as one of the tokenizer classes of the library
        when created with the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method take care of returning the correct tokenizer class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The tokenizer class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `distilbert`: DistilBertTokenizer (DistilBert model)
            - contains `roberta`: RobertaTokenizer (RoBERTa model)
            - contains `bert`: BertTokenizer (Bert model)
            - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
            - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
            - contains `xlnet`: XLNetTokenizer (XLNet model)
            - contains `xlm`: XLMTokenizer (XLM model)

        This class cannot be instantiated using `__init__()` (throw an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoTokenizer is designed to be instantiated "
            "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        r""" Instantiate a one of the tokenizer classes of the library
        from a pre-trained model vocabulary.

        The tokenizer class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `distilbert`: DistilBertTokenizer (DistilBert model)
            - contains `roberta`: RobertaTokenizer (XLM model)
            - contains `bert`: BertTokenizer (Bert model)
            - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
            - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
            - contains `xlnet`: XLNetTokenizer (XLNet model)
            - contains `xlm`: XLMTokenizer (XLM model)

        Params:
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')    # Download vocabulary from S3 and cache.
            tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/')  # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`

        """
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'roberta' in pretrained_model_name_or_path:
            return RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))