File size: 23,313 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/Transformer-XL/XLNet)
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import argparse
import glob
import logging
import os
import pickle
import random


import torch
import torch.nn.functional as F
import numpy as np

from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange


from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, BertConfig
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForLatentConnector
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
from pytorch_transformers import BertForLatentConnector, BertTokenizer

from collections import defaultdict
from modules import VAE
from utils import (TextDataset_Split, TextDataset_2Tokenizers, BucketingDataLoader)


import pdb


logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

MAX_LENGTH = int(10000)  # Hardcoded max length to avoid infinite loop

ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ())

MODEL_CLASSES = {
    'gpt2': (GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer),
    'bert': (BertConfig, BertForLatentConnector, BertTokenizer)
}

# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""


def set_seed(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def load_and_cache_examples(args, tokenizer, evaluate=False):
    if isinstance(tokenizer, list):
        dataset = TextDataset_2Tokenizers(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
    else:
        dataset = TextDataset_Split(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
    return dataset

def build_dataload_and_cache_examples(args, tokenizer, evaluate=False):
    if isinstance(tokenizer, list):
        if not evaluate:
            args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
            file_path=args.train_data_file
        else:
            args.batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)  
            file_path=args.eval_data_file
        dataloader = BucketingDataLoader(file_path, args.batch_size, args.max_seq_length, tokenizer, args, bucket=100, shuffle=False)
    else:
        pass 
    return dataloader


def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=0, top_p=0.0, is_xlnet=False, device='cpu'):
    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0).repeat(num_samples, 1)
    generated = context
    with torch.no_grad():
        for _ in trange(length):

            inputs = {'input_ids': generated}
            if is_xlnet: 
                # XLNet is a direct (predict same token, not next token) and bi-directional model by default
                # => need one additional dummy token in the input (will be masked), attention mask and target mapping (see model docstring)
                input_ids = torch.cat((generated, torch.zeros((1, 1), dtype=torch.long, device=device)), dim=1)
                perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float, device=device)
                perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
                target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float, device=device)
                target_mapping[0, 0, -1] = 1.0  # predict last token
                inputs = {'input_ids': input_ids, 'perm_mask': perm_mask, 'target_mapping': target_mapping}

            outputs = model(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][0, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
    return generated

def sample_sequence_conditional(model, length, context, past=None, num_samples=1, temperature=1, top_k=0, top_p=0.0, device='cpu', decoder_tokenizer=None):
    
    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0).repeat(num_samples, 1)
    generated = context
    with torch.no_grad():
        while True:
        # for _ in trange(length):
            inputs = {'input_ids': generated, 'past': past}
            outputs = model(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][0, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)

            # pdb.set_trace()
            if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
                break

    return generated



# a wrapper function to choose between different play modes
def evaluate_latent_space(args, model_vae, encoder_tokenizer, decoder_tokenizer, prefix=""):

    eval_dataloader = build_dataload_and_cache_examples(args, [encoder_tokenizer, decoder_tokenizer], evaluate=False)

    # Eval!
    logger.info("***** Running recontruction evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataloader))
    logger.info("  Batch size = %d", args.per_gpu_eval_batch_size)
    
    model_vae.eval()

    model_vae =  model_vae.module if hasattr(model_vae, 'module') else model_vae  # Take care of distributed/parallel training

    if args.play_mode == 'reconstrction':
        result = calc_rec(model_vae, eval_dataloader, encoder_tokenizer, decoder_tokenizer, args, ns=100)
        result_file_name = "eval_recontruction_results.txt"
    elif args.play_mode == 'interpolation':
        result = calc_interpolate(model_vae, eval_dataloader, encoder_tokenizer, decoder_tokenizer, args, ns=100)
        result_file_name = "eval_interpolation_results.txt"
    else:
        logger.info("Please specify the corrent play mode [reconstrction, interpolation]")
        

    eval_output_dir = args.output_dir
    output_eval_file = os.path.join(eval_output_dir, result_file_name)

    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval {} results *****".format(args.play_mode))
        for key in sorted(result.keys()):
            logger.info("  %s \n %s", key, str(result[key]))
            writer.write("%s \n %s\n" % (key, str(result[key])))

    return result


def calc_rec(model_vae, eval_dataloader, encoder_tokenizer, decoder_tokenizer, args, ns=1):

    count = 0
    result = defaultdict(str)
    for batch in tqdm(eval_dataloader, desc="Evaluating recontruction"):
        # pdb.set_trace()
        x0, x1, x_lengths = batch

        max_len_values, _ = x_lengths.max(0)
        x0 = x0[:,:max_len_values[0]]
        x1 = x1[:,:max_len_values[1]]

        x0 = x0.to(args.device)
        x1 = x1.to(args.device)
        x_lengths = x_lengths.to(args.device)

        context_tokens = decoder_tokenizer.encode('<BOS>')

        with torch.no_grad():

            text_x0 = encoder_tokenizer.decode(x0[0,:x_lengths[0,0]].tolist(), clean_up_tokenization_spaces=True)[0]
            # result["INPUT TEXT " + str(count)].append(text_x0)

            pooled_hidden_fea = model_vae.encoder(x0, attention_mask=(x0 > 0).float())[1]
  
            # Connect hidden feature to the latent space
            # latent_z, loss_kl = model_vae.connect(pooled_hidden_fea)
            mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
            latent_z = mean.squeeze(1)

            past = latent_z
            out = sample_sequence_conditional(
                model=model_vae.decoder,
                context=context_tokens,
                past=past,
                length=x_lengths[0,1], # Chunyuan: Fix length; or use <EOS> to complete a sentence
                temperature=args.temperature,
                top_k=args.top_k,
                top_p=args.top_p,
                device=args.device,
                decoder_tokenizer = decoder_tokenizer
            )
            text_x1 = decoder_tokenizer.decode(out[0,:].tolist(), clean_up_tokenization_spaces=True)
            text_x1 = text_x1.split()[1:-1]
            text_x1 = ' '.join(text_x1) + '\n'
            result[text_x0] = text_x1

        count += 1
        if count>args.total_sents:
            break
        

    return result




def calc_interpolate(model_vae, eval_dataloader, encoder_tokenizer, decoder_tokenizer, args, ns=1):

    count = 0
    latent_codes = []
    sample_interval = 0
    for batch in tqdm(eval_dataloader, desc="Evaluating interpolation"):
        # pdb.set_trace()
        x0, x1, x_lengths = batch

        max_len_values, _ = x_lengths.max(0)
        x0 = x0[:,:max_len_values[0]]
        x0 = x0.to(args.device)
        x_lengths = x_lengths.to(args.device)


        with torch.no_grad():
            if sample_interval == 0 or sample_interval == args.total_sents:
                text_x0 = encoder_tokenizer.decode(x0[0,:x_lengths[0,0]].tolist(), clean_up_tokenization_spaces=True)[0]
                pooled_hidden_fea = model_vae.encoder(x0, attention_mask=(x0 > 0).float())[1]
    
                # Connect hidden feature to the latent space
                mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
                latent_z = mean.squeeze(1)
                
                latent_codes.append(latent_z)

                if sample_interval == 5: 
                    latent_codes.append(latent_z)
                    sample_interval = 0
                    continue
            else: 
                sample_interval += 1
                continue

        count += 1
        if count>args.total_sents:
            break                

    context_tokens = decoder_tokenizer.encode('<BOS>')
    result = defaultdict(str)
    latent_codes_interpolation = []
    num_steps = args.num_interpolation_steps
    for step in range(num_steps+1):
        latent_z = latent_codes[0] + (latent_codes[1] - latent_codes[0]) * step * 1.0/num_steps

        past = latent_z
        out = sample_sequence_conditional(
            model=model_vae.decoder,
            context=context_tokens,
            past=past,
            length=x_lengths[0,1], # Chunyuan: Fix length; or use <EOS> to complete a sentence
            temperature=args.temperature,
            top_k=args.top_k,
            top_p=args.top_p,
            device=args.device,
            decoder_tokenizer = decoder_tokenizer
        )
        text_x1 = decoder_tokenizer.decode(out[0,:].tolist(), clean_up_tokenization_spaces=True)
        text_x1 = text_x1.split()[1:-1]
        text_x1 = ' '.join(text_x1) 
        result[step] = text_x1

    return result




def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--train_data_file", default=None, type=str, required=True,
                        help="The input training data file (a text file).")
    parser.add_argument("--eval_data_file", default=None, type=str,
                        help="An input evaluation data file to evaluate the perplexity on (a text file).")
    parser.add_argument("--checkpoint_dir", default=None, type=str, required=True,
                        help="The directory where checkpoints are saved.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--dataset", default='Snli', type=str, help="The dataset.")

    ## Variational auto-encoder
    parser.add_argument("--latent_size", default=32, type=int, help="Latent space dimension.")
    parser.add_argument("--total_sents", default=10, type=int, help="Total sentences to test recontruction.")
    parser.add_argument("--num_interpolation_steps", default=10, type=int, help="Total sentences to test recontruction.")
    parser.add_argument("--play_mode", default="interpolation", type=str,
                        help="interpolation or reconstruction.")


    ## Encoder options
    parser.add_argument("--encoder_model_type", default="bert", type=str,
                        help="The encoder model architecture to be fine-tuned.")
    parser.add_argument("--encoder_model_name_or_path", default="bert-base-cased", type=str,
                        help="The encoder model checkpoint for weights initialization.")
    parser.add_argument("--encoder_config_name", default="", type=str,
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
    parser.add_argument("--encoder_tokenizer_name", default="", type=str,
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")

    ## Decoder options
    parser.add_argument("--decoder_model_type", default="gpt2", type=str,
                        help="The decoder model architecture to be fine-tuned.")
    parser.add_argument("--decoder_model_name_or_path", default="bert-base-cased", type=str,
                        help="The decoder model checkpoint for weights initialization.")
    parser.add_argument("--decoder_config_name", default="", type=str,
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
    parser.add_argument("--decoder_tokenizer_name", default="", type=str,
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")


    parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gloabl_step_eval', type=int, default=661,
                        help="Evaluate the results at the given global step")

    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="Optional input sequence length before tokenization. The sequence will be dropped if it is longer the max_seq_length")


    ## Variational auto-encoder
    parser.add_argument("--nz", default=32, type=int,
                        help="Latent space dimension.")

    parser.add_argument("--prompt", type=str, default="")
    parser.add_argument("--padding_text", type=str, default="")
    parser.add_argument("--length", type=int, default=20)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=0)
    parser.add_argument("--top_p", type=float, default=0.9)
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument("--block_size", default=-1, type=int,
                        help="Optional input sequence length after tokenization."
                             "The training dataset will be truncated in block of this size for training."
                             "Default to the model max input length for single sentence inputs (take into account special tokens).")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--use_philly", action='store_true',
                        help="Use Philly for computing.")

    args = parser.parse_args()

    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = torch.cuda.device_count()

    set_seed(args)


    args.encoder_model_type = args.encoder_model_type.lower()
    args.decoder_model_type = args.decoder_model_type.lower()


    global_step = args.gloabl_step_eval

    output_encoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-encoder-{}'.format(global_step))
    output_decoder_dir = os.path.join(args.checkpoint_dir, 'checkpoint-decoder-{}'.format(global_step)) 
    checkpoints = [ [output_encoder_dir, output_decoder_dir] ]
    logger.info("Evaluate the following checkpoints: %s", checkpoints)

    # Load a trained Encoder model and vocabulary that you have fine-tuned
    encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES[args.encoder_model_type]
    model_encoder = encoder_model_class.from_pretrained(output_encoder_dir, latent_size=args.latent_size)
    tokenizer_encoder = encoder_tokenizer_class.from_pretrained(args.encoder_tokenizer_name if args.encoder_tokenizer_name else args.encoder_model_name_or_path, do_lower_case=args.do_lower_case)

    model_encoder.to(args.device)
    if args.block_size <= 0:
        args.block_size = tokenizer_encoder.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer_encoder.max_len_single_sentence)

    # Load a trained Decoder model and vocabulary that you have fine-tuned
    decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES[args.decoder_model_type]
    model_decoder = decoder_model_class.from_pretrained(output_decoder_dir, latent_size=args.latent_size)
    tokenizer_decoder = decoder_tokenizer_class.from_pretrained(args.decoder_tokenizer_name if args.decoder_tokenizer_name else args.decoder_model_name_or_path, do_lower_case=args.do_lower_case)
    model_decoder.to(args.device)
    if args.block_size <= 0:
        args.block_size = tokenizer_decoder.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer_decoder.max_len_single_sentence)

    # Load full model
    output_full_dir    = os.path.join(args.checkpoint_dir, 'checkpoint-full-{}'.format(global_step)) 
    checkpoint = torch.load(os.path.join(output_full_dir, 'training.bin'))

    # Chunyuan: Add Padding token to GPT2
    special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
    num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict)
    print('We have added', num_added_toks, 'tokens to GPT2')
    model_decoder.resize_token_embeddings(len(tokenizer_decoder))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
    assert tokenizer_decoder.pad_token == '<PAD>'

    
    # Evaluation
    model_vae = VAE(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, args)
    model_vae.load_state_dict(checkpoint['model_state_dict'])
    logger.info("Pre-trained Optimus is successfully loaded")
    model_vae.to(args.device)

    result = evaluate_latent_space(args, model_vae, tokenizer_encoder, tokenizer_decoder, prefix=global_step)


if __name__ == '__main__':
    main()