File size: 5,486 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from .vae import VAE
import numpy as np
import torch, copy, pdb
import torch.nn.functional as F

from torch import nn

import pdb


def set_trainable(module, value):
    for param in module.parameters():
        param.requires_grad = value

class SpaceFusion(VAE):
    def __init__(self, encoder, decoder,  tokenizer_encoder, tokenizer_decoder, args): 
        super(SpaceFusion, self).__init__(encoder, decoder,  tokenizer_encoder, tokenizer_decoder, args)
        children = [v for v in encoder.encoder.layer.children()]    # list of 12 BertLayer

        self.num_s2s_bert_layer = args.num_s2s_bert_layer
        self.S2S_layers = nn.ModuleList([copy.deepcopy(c) for c in children[-args.num_s2s_bert_layer:] ])    # the last layer of encoder
        self.S2S_pooler = copy.deepcopy(encoder.pooler)
        self.ix_turn_sep = tokenizer_encoder.convert_tokens_to_ids('[SEP]')
        if args.freeze_bert:
            print('@'*20 + f' freezing BERT {args.num_frozen_bert_layer} layers')
            for child in children[:args.num_frozen_bert_layer]:
                set_trainable(child, False)



    def ids2speaker(self, ids):
        # 0 for speaker A, 1 for speaker B
        N, T = ids.shape
        speaker = np.zeros((N, T))
        sep = ids == self.ix_turn_sep
        for i in range(N):
            is_B = False    # start with speaker A
            for t in range(T):
                speaker[i,t] = int(is_B)
                if sep[i,t].item():
                    is_B = not is_B

        # make sure the final speaker is speaker B (so response is always speaker A)
        if not is_B:
            speaker = 1 - speaker

        return torch.LongTensor(speaker).to(ids.device)

    def forward(self, inputs_src, inputs_tgt, labels_tgt, return_vec=False):  # [batch, time]
        # toggle config to get desired encoder output
        self.encoder.encoder.output_attentions = False
        self.encoder.encoder.output_hidden_states = True

        
        # AE encoder
        mask = (inputs_tgt > 0).float().to(inputs_src.device)
        outputs = self.encoder(inputs_tgt, attention_mask=mask)
        z_AE, _ = self.connect(outputs[1])
        z_AE = z_AE.squeeze(1)

        # S2S encoder
        mask = (inputs_src > 0).float()
        speaker = self.ids2speaker(inputs_src)
        outputs = self.encoder(inputs_src, attention_mask=mask, token_type_ids=speaker)
        _, _, all_layer_attn = outputs      # last_layer_attn, pooled, all_layer_attn = outputs
        seq_z_prev = all_layer_attn[-self.num_s2s_bert_layer-1]     # seq of z at layer 11 ()

        for s2s in self.S2S_layers: 
            layer_outputs = s2s(seq_z_prev, attention_mask=mask.unsqueeze(1).unsqueeze(1))
            seq_z_prev = layer_outputs[0]

        z_S2S = self.encoder.pooler(layer_outputs[0])
        z_S2S, _ = self.connect(z_S2S)
        z_S2S = z_S2S.squeeze(1)

        if return_vec:
            return z_AE, z_S2S

        # interpolation/smoothness
        u = torch.FloatTensor(np.random.random((z_AE.shape[0], 1))).to(inputs_tgt.device)
        z_interp = u * z_AE + (1 - u) * z_S2S
        std = 0.1
        noise = torch.FloatTensor(np.random.normal(size=z_interp.shape) * std).to(z_interp.device)
        z_interp = z_interp + noise

        loss_rec = 0
        z_idx = 0
        for z in [z_AE, z_S2S, z_interp]:
            #pdb.set_trace()
            past = z # past = self.decoder.linear(z)
            outputs = self.decoder(input_ids=labels_tgt, past=past, labels=labels_tgt, label_ignore=self.pad_token_id)
            if z_idx == 1:
                loss_rec = loss_rec + 1.0 * outputs[0]
            else:
                loss_rec = loss_rec + outputs[0]
            z_idx += 1
        loss_rec = loss_rec/3
        
        # fusion/regularization
        L_pull = self.dist_pair(z_AE, z_S2S)
        L_push = torch.stack([self.dist_batch(z) for z in [z_AE, z_S2S]]).min()
        loss_reg = (L_pull - L_push * 2) / np.sqrt(z.shape[-1])
        
        loss = loss_rec + self.args.beta * loss_reg
        return loss_rec, loss_reg, loss

    def sent2latent(self, inputs_src):
        # toggle config to get desired encoder output
        self.encoder.encoder.output_attentions = False
        self.encoder.encoder.output_hidden_states = True

        # S2S encoder
        mask = (inputs_src > 0).float()
        speaker = self.ids2speaker(inputs_src)
        outputs = self.encoder(inputs_src, attention_mask=mask, token_type_ids=speaker)

        _, _, all_layer_attn = outputs      # last_layer_attn, pooled, all_layer_attn = outputs
        # seq_z_prev = all_layer_attn[-2]     # seq of z at layer 11 ()
        # layer_outputs = self.S2S_layer(seq_z_prev, attention_mask=mask.unsqueeze(1).unsqueeze(1))

        seq_z_prev = all_layer_attn[-self.num_s2s_bert_layer-1]     # seq of z at layer 11 ()
        for s2s in self.S2S_layers: 
            layer_outputs = s2s(seq_z_prev, attention_mask=mask.unsqueeze(1).unsqueeze(1))
            seq_z_prev = layer_outputs[0]

        z_S2S = self.encoder.pooler(layer_outputs[0])
        z_S2S, _ = self.connect(z_S2S)
        z_S2S = z_S2S.squeeze(1)
        
        return z_S2S


    def dist_pair(self, a, b):
        return F.pairwise_distance(a, b).mean()


    def dist_batch(self, vec):
        n = vec.shape[0]
        dmin = []
        for i in range(n):
            dd = F.pairwise_distance(vec[i:i+1,:].repeat(n,1), vec)
            dmin.append(dd.min())
        return torch.stack(dmin).mean()