ruslanmv commited on
Commit
d0be98e
·
verified ·
1 Parent(s): ad8958a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -29
app.py CHANGED
@@ -1,12 +1,26 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
 
 
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -25,39 +39,49 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
59
- )
 
 
 
60
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ !pip install bitsandbytes accelerate gradio
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
5
+ import torch
6
 
7
+ # Define BitsAndBytesConfig
8
+ bnb_config = BitsAndBytesConfig(load_in_4bit=True,
9
+ bnb_4bit_quant_type="nf4",
10
+ bnb_4bit_compute_dtype=torch.float16)
11
 
12
+ # Model name
13
+ model_name = "ruslanmv/Medical-Llama3-v2"
14
 
15
+ # Load tokenizer and model with BitsAndBytesConfig
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, bnb_config=bnb_config)
17
+ model = AutoModelForCausalLM.from_pretrained(model_name, config=bnb_config)
18
+
19
+ # Ensure model is on the correct device
20
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ model.to(device)
22
+
23
+ # Define the respond function
24
  def respond(
25
  message,
26
  history: list[tuple[str, str]],
 
39
 
40
  messages.append({"role": "user", "content": message})
41
 
42
+ # Format the conversation as a single string for the model
43
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
44
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=1000)
45
+
46
+ # Move inputs to device
47
+ input_ids = inputs['input_ids'].to(device)
48
+ attention_mask = inputs['attention_mask'].to(device)
49
+
50
+ # Generate the response
51
+ with torch.no_grad():
52
+ outputs = model.generate(
53
+ input_ids=input_ids,
54
+ attention_mask=attention_mask,
55
+ max_length=max_tokens,
56
+ temperature=temperature,
57
+ top_p=top_p,
58
+ use_cache=True
59
+ )
60
+
61
+ # Extract the response
62
+ response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
63
+
64
+ # Remove the prompt and system message from the response
65
+ response_text = response_text.replace(system_message, '').strip()
66
+ response_text = response_text.replace(f"Human: {message}\n\nAssistant: ", '').strip()
67
+
68
+ return response_text
69
 
70
+ # Create the Gradio interface
 
 
 
 
 
71
  demo = gr.ChatInterface(
72
  respond,
73
  additional_inputs=[
74
+ gr.Textbox(value="You are a Medical AI Assistant. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.", label="System message", lines=3),
75
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
76
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
77
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
78
  ],
79
+ title="Medical AI Assistant",
80
+ description="Give me your symptoms and ask me a health problem. The AI will provide informative answers. If the AI doesn't know the answer, it will advise seeking professional help.",
81
+
82
+ examples=[["I have a headache and a fever. What should I do?"], ["What are the symptoms of diabetes?"], ["How can I improve my sleep?"]],
83
 
84
+ )
85
 
86
  if __name__ == "__main__":
87
  demo.launch()