"""Developed by Ruslan Magana Vsevolodovna"""
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import io
import base64
import random
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
from themes.research_monochrome import theme
# =============================================================================
# Constants & Prompts
# =============================================================================
today_date = datetime.today().strftime("%B %-d, %Y")
SYS_PROMPT = """
Respond in the following format:
...
...
"""
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
DESCRIPTION = """
Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample prompts
or enter your own. Keep in mind that AI can occasionally make mistakes.
View Documentation
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.5
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128
if not torch.cuda.is_available():
print("This demo may not work on CPU.")
# =============================================================================
# Text Model Loading
# =============================================================================
granite_text_model = "ruslanmv/granite-3.1-8b-Reasoning"
text_model = AutoModelForCausalLM.from_pretrained(
granite_text_model,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
tokenizer.use_default_system_prompt = False
# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
vision_model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True # Ensure the custom code is used so that weight shapes match.
)
# =============================================================================
# Unified Display Function
# =============================================================================
def get_text_from_content(content):
"""Helper to extract text from a list of content items."""
texts = []
for item in content:
if isinstance(item, dict):
if item.get("type") == "text":
texts.append(item.get("text", ""))
elif item.get("type") == "image":
image = item.get("image")
if image is not None:
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
texts.append(f'
')
else:
texts.append("")
else:
texts.append(str(item))
return " ".join(texts)
def display_unified_conversation(conversation):
"""
Combine both text-only and vision messages.
Each conversation entry is expected to be a dict with keys:
- role: "user" or "assistant"
- content: either a string (for text) or a list of content items (for vision)
"""
chat_history = []
i = 0
while i < len(conversation):
if conversation[i]["role"] == "user":
user_content = conversation[i]["content"]
if isinstance(user_content, list):
user_msg = get_text_from_content(user_content)
else:
user_msg = user_content
assistant_msg = ""
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
asst_content = conversation[i+1]["content"]
if isinstance(asst_content, list):
assistant_msg = get_text_from_content(asst_content)
else:
assistant_msg = asst_content
i += 2
else:
i += 1
chat_history.append((user_msg, assistant_msg))
else:
i += 1
return chat_history
# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
temperature: float = TEMPERATURE,
repetition_penalty: float = REPETITION_PENALTY,
top_p: float = TOP_P,
top_k: float = TOP_K,
max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
"""
Generate function for text chat. It streams tokens and stops once the generated answer
contains the closing tag.
"""
conversation = []
conversation.append({"role": "system", "content": SYS_PROMPT})
conversation.extend(chat_history)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
)
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
reasoning_started = False
answer_started = False
collected_reasoning = ""
collected_answer = ""
for text in streamer:
outputs.append(text)
current_output = "".join(outputs)
if "" in current_output and not reasoning_started:
reasoning_started = True
reasoning_start_index = current_output.find("") + len("")
collected_reasoning = current_output[reasoning_start_index:]
yield "[Reasoning]: "
outputs = [collected_reasoning]
elif reasoning_started and "" in current_output and not answer_started:
answer_started = True
reasoning_end_index = current_output.find("")
collected_reasoning = current_output[len(""):reasoning_end_index]
answer_start_index = current_output.find("") + len("")
collected_answer = current_output[answer_start_index:]
yield "\n[Answer]: "
outputs = [collected_answer]
yield collected_answer
elif reasoning_started and not answer_started:
collected_reasoning += text
yield text
elif answer_started:
collected_answer += text
yield text
if "" in collected_answer:
break
else:
yield text
# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
if conversation is None:
conversation = []
user_content = []
if image is not None:
user_content.append({"type": "image", "image": image})
if text and text.strip():
user_content.append({"type": "text", "text": text.strip()})
if not user_content:
return display_unified_conversation(conversation), conversation
conversation.append({"role": "user", "content": user_content})
inputs = vision_processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to("cuda")
torch.manual_seed(random.randint(0, 10000))
generation_kwargs = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
output = vision_model.generate(**inputs, **generation_kwargs)
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
if "<|assistant|>" in assistant_response:
assistant_response_parts = assistant_response.split("<|assistant|>")
assistant_response_text = assistant_response_parts[-1].strip()
else:
assistant_response_text = assistant_response.strip()
conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_response_text.strip()}]})
return display_unified_conversation(conversation), conversation
# =============================================================================
# Unified Send-Message Function
#
# We now maintain two histories:
# - unified_state: complete conversation (for display)
# - internal_text_state: only text turns (for text generation)
# Vision turns update only unified_state.
# =============================================================================
def send_message(image, text,
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
unified_state, vision_state, internal_text_state):
# Initialize states if empty
if unified_state is None:
unified_state = []
if internal_text_state is None:
internal_text_state = []
if image is not None:
# Use vision inference.
user_msg = []
user_msg.append({"type": "image", "image": image})
if text and text.strip():
user_msg.append({"type": "text", "text": text.strip()})
unified_state.append({"role": "user", "content": user_msg})
chat_history, updated_vision_conv = chat_inference(image, text, vision_state,
temperature=vision_temperature,
top_p=vision_top_p,
top_k=vision_top_k,
max_tokens=vision_max_tokens)
vision_state = updated_vision_conv
if updated_vision_conv and updated_vision_conv[-1]["role"] == "assistant":
unified_state.append(updated_vision_conv[-1])
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
else:
# Text-only mode: update both unified and internal text states.
unified_state.append({"role": "user", "content": text})
internal_text_state.append({"role": "user", "content": text})
unified_state.append({"role": "assistant", "content": ""})
internal_text_state.append({"role": "assistant", "content": ""})
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
base_conv = internal_text_state[:-1]
assistant_text = ""
for chunk in generate(
text, base_conv,
temperature=text_temperature,
repetition_penalty=text_repetition_penalty,
top_p=text_top_p,
top_k=text_top_k,
max_new_tokens=text_max_new_tokens
):
assistant_text += chunk
unified_state[-1]["content"] = assistant_text
internal_text_state[-1]["content"] = assistant_text
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
# =============================================================================
# Clear Chat Function
# =============================================================================
def clear_chat():
# Clear unified conversation, vision state, and internal text state.
return [], [], [], [], "", None
# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
with gr.Blocks(fill_height=True, css_paths=[str(css_file_path)], head_paths=[str(head_file_path)], theme=theme, title=TITLE) as demo:
gr.HTML(f"{TITLE}
", elem_classes=["gr_title"])
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat History", height=500)
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Upload Image (optional)")
text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
with gr.Column(scale=1):
with gr.Accordion("Text Advanced Settings", open=False):
text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
with gr.Accordion("Vision Advanced Settings", open=False):
vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
send_button = gr.Button("Send Message")
clear_button = gr.Button("Clear Chat")
# Conversation state variables:
# - unified_state: complete conversation for display (text and vision)
# - vision_state: state for vision turns
# - internal_text_state: only text turns (for text-generation)
unified_state = gr.State([])
vision_state = gr.State([])
internal_text_state = gr.State([])
send_button.click(
send_message,
inputs=[
image_input, text_input,
text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
unified_state, vision_state, internal_text_state
],
outputs=[chatbot, unified_state, vision_state, internal_text_state],
)
clear_button.click(
clear_chat,
inputs=None,
outputs=[chatbot, unified_state, vision_state, internal_text_state, text_input, image_input]
)
gr.Examples(
examples=[
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
[None, "Compute Pi."],
[None, "Explain quantum computing to a beginner."],
[None, "What is OpenShift?"],
[None, "Importance of low latency inference"],
[None, "Boosting productivity habits"],
[None, "Explain and document your code"],
[None, "Generate Java Code"]
],
inputs=[image_input, text_input],
example_labels=[
"Vision Example: What is in this image?",
"Compute Pi.",
"Explain quantum computing",
"What is OpenShift?",
"Importance of low latency inference",
"Boosting productivity habits",
"Explain and document your code",
"Generate Java Code"
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue().launch(debug=True, share=False)