File size: 17,696 Bytes
7eb0ce3
a65dc3e
35932eb
 
 
 
a65dc3e
 
 
 
35932eb
 
 
 
 
a65dc3e
35932eb
 
 
 
 
a65dc3e
 
 
 
 
 
 
 
 
 
 
6b58dd1
a65dc3e
 
 
 
 
 
 
 
35932eb
 
a65dc3e
35932eb
 
 
a65dc3e
35932eb
 
 
 
 
 
 
 
a65dc3e
35932eb
 
 
a65dc3e
 
 
35932eb
6b58dd1
35932eb
 
 
6b58dd1
35932eb
a65dc3e
35932eb
 
 
 
 
 
 
 
 
a65dc3e
35932eb
a65dc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
a65dc3e
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
 
a65dc3e
 
 
 
 
 
 
 
 
 
 
35932eb
 
ebb25b2
35932eb
ebb25b2
 
 
 
 
35932eb
 
ebb25b2
 
 
 
 
 
a65dc3e
 
ebb25b2
 
 
 
a65dc3e
ebb25b2
 
 
a65dc3e
 
 
ebb25b2
 
a65dc3e
 
ebb25b2
 
a65dc3e
 
 
 
ebb25b2
a65dc3e
 
35932eb
 
 
 
9c3c737
35932eb
9c3c737
 
 
 
 
 
 
 
a65dc3e
35932eb
9c3c737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb25b2
a65dc3e
 
 
aec88ad
a65dc3e
35932eb
a65dc3e
 
9c3c737
35932eb
 
a65dc3e
 
 
 
 
35932eb
 
 
 
a65dc3e
 
 
 
 
 
 
35932eb
a65dc3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35932eb
a65dc3e
 
 
 
 
 
 
 
 
35932eb
a65dc3e
35932eb
 
 
 
 
 
a65dc3e
 
 
 
ebb25b2
a65dc3e
35932eb
a65dc3e
 
 
9c3c737
a65dc3e
397d009
a65dc3e
35932eb
 
 
9c3c737
 
a65dc3e
 
9c3c737
 
ebb25b2
35932eb
ebb25b2
c1f9bb7
 
 
 
35932eb
 
 
 
 
 
 
 
 
 
 
 
a65dc3e
 
35932eb
ebb25b2
a65dc3e
 
 
 
 
35932eb
a65dc3e
ebb25b2
9c3c737
35932eb
 
 
 
 
a65dc3e
35932eb
a65dc3e
9c3c737
ebb25b2
9c3c737
 
 
a65dc3e
9c3c737
ebb25b2
9c3c737
 
7eb0ce3
a65dc3e
7b82a16
 
 
 
 
 
35932eb
 
 
 
a65dc3e
35932eb
7b82a16
7eb0ce3
 
 
 
9c3c737
35932eb
9c3c737
 
 
a65dc3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""Developed by Ruslan Magana Vsevolodovna"""

from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import io
import base64
import random

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration

from themes.research_monochrome import theme

# =============================================================================
# Constants & Prompts
# =============================================================================
today_date = datetime.today().strftime("%B %-d, %Y")
SYS_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""

TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
DESCRIPTION = """
<p>Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample prompts
or enter your own. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.5
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05

# Vision defaults (advanced settings)
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128

if not torch.cuda.is_available():
    print("This demo may not work on CPU.")

# =============================================================================
# Text Model Loading
# =============================================================================

granite_text_model = "ruslanmv/granite-3.1-8b-Reasoning"

text_model = AutoModelForCausalLM.from_pretrained(
    granite_text_model,
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
tokenizer.use_default_system_prompt = False

# =============================================================================
# Vision Model Loading
# =============================================================================
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
    vision_model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True  # Ensure the custom code is used so that weight shapes match.
)

# =============================================================================
# Unified Display Function
# =============================================================================
def get_text_from_content(content):
    """Helper to extract text from a list of content items."""
    texts = []
    for item in content:
        if isinstance(item, dict):
            if item.get("type") == "text":
                texts.append(item.get("text", ""))
            elif item.get("type") == "image":
                image = item.get("image")
                if image is not None:
                    buffered = io.BytesIO()
                    image.save(buffered, format="JPEG")
                    img_str = base64.b64encode(buffered.getvalue()).decode()
                    texts.append(f'<img src="data:image/jpeg;base64,{img_str}" style="max-width: 200px; max-height: 200px;">')
                else:
                    texts.append("<image>")
        else:
            texts.append(str(item))
    return " ".join(texts)

def display_unified_conversation(conversation):
    """
    Combine both text-only and vision messages.
    Each conversation entry is expected to be a dict with keys:
      - role: "user" or "assistant"
      - content: either a string (for text) or a list of content items (for vision)
    """
    chat_history = []
    i = 0
    while i < len(conversation):
        if conversation[i]["role"] == "user":
            user_content = conversation[i]["content"]
            if isinstance(user_content, list):
                user_msg = get_text_from_content(user_content)
            else:
                user_msg = user_content
            assistant_msg = ""
            if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
                asst_content = conversation[i+1]["content"]
                if isinstance(asst_content, list):
                    assistant_msg = get_text_from_content(asst_content)
                else:
                    assistant_msg = asst_content
                i += 2
            else:
                i += 1
            chat_history.append((user_msg, assistant_msg))
        else:
            i += 1
    return chat_history

# =============================================================================
# Text Generation Function (for text-only chat)
# =============================================================================
@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
    """
    Generate function for text chat. It streams tokens and stops once the generated answer
    contains the closing </answer> tag.
    """
    conversation = []
    conversation.append({"role": "system", "content": SYS_PROMPT})
    conversation.extend(chat_history)
    conversation.append({"role": "user", "content": message})
    input_ids = tokenizer.apply_chat_template(
        conversation,
        return_tensors="pt",
        add_generation_prompt=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
    )
    input_ids = input_ids.to(text_model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = {
        "input_ids": input_ids,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "top_p": top_p,
        "top_k": top_k,
        "temperature": temperature,
        "num_beams": 1,
        "repetition_penalty": repetition_penalty,
    }
    t = Thread(target=text_model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    reasoning_started = False
    answer_started = False
    collected_reasoning = ""
    collected_answer = ""

    for text in streamer:
        outputs.append(text)
        current_output = "".join(outputs)

        if "<reasoning>" in current_output and not reasoning_started:
            reasoning_started = True
            reasoning_start_index = current_output.find("<reasoning>") + len("<reasoning>")
            collected_reasoning = current_output[reasoning_start_index:]
            yield "[Reasoning]: "
            outputs = [collected_reasoning]

        elif reasoning_started and "<answer>" in current_output and not answer_started:
            answer_started = True
            reasoning_end_index = current_output.find("<answer>")
            collected_reasoning = current_output[len("<reasoning>"):reasoning_end_index]

            answer_start_index = current_output.find("<answer>") + len("<answer>")
            collected_answer = current_output[answer_start_index:]
            yield "\n[Answer]: "
            outputs = [collected_answer]
            yield collected_answer

        elif reasoning_started and not answer_started:
            collected_reasoning += text
            yield text

        elif answer_started:
            collected_answer += text
            yield text
            if "</answer>" in collected_answer:
                break

        else:
            yield text

# =============================================================================
# Vision Chat Inference Function (for image+text chat)
# =============================================================================
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
    if conversation is None:
        conversation = []
    user_content = []
    if image is not None:
        user_content.append({"type": "image", "image": image})
    if text and text.strip():
        user_content.append({"type": "text", "text": text.strip()})
    if not user_content:
        return display_unified_conversation(conversation), conversation
    conversation.append({"role": "user", "content": user_content})
    inputs = vision_processor.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to("cuda")
    torch.manual_seed(random.randint(0, 10000))
    generation_kwargs = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "do_sample": True,
    }
    output = vision_model.generate(**inputs, **generation_kwargs)
    assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)

    if "<|assistant|>" in assistant_response:
        assistant_response_parts = assistant_response.split("<|assistant|>")
        assistant_response_text = assistant_response_parts[-1].strip()
    else:
        assistant_response_text = assistant_response.strip()

    conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_response_text.strip()}]})
    return display_unified_conversation(conversation), conversation

# =============================================================================
# Unified Send-Message Function
#
# We now maintain two histories:
#  - unified_state: complete conversation (for display)
#  - internal_text_state: only text turns (for text generation)
# Vision turns update only unified_state.
# =============================================================================
def send_message(image, text,
                 text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
                 vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
                 unified_state, vision_state, internal_text_state):
    # Initialize states if empty
    if unified_state is None:
        unified_state = []
    if internal_text_state is None:
        internal_text_state = []

    if image is not None:
        # Use vision inference.
        user_msg = []
        user_msg.append({"type": "image", "image": image})
        if text and text.strip():
            user_msg.append({"type": "text", "text": text.strip()})
        unified_state.append({"role": "user", "content": user_msg})
        chat_history, updated_vision_conv = chat_inference(image, text, vision_state,
                                                           temperature=vision_temperature,
                                                           top_p=vision_top_p,
                                                           top_k=vision_top_k,
                                                           max_tokens=vision_max_tokens)
        vision_state = updated_vision_conv
        if updated_vision_conv and updated_vision_conv[-1]["role"] == "assistant":
            unified_state.append(updated_vision_conv[-1])
        yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state

    else:
        # Text-only mode: update both unified and internal text states.
        unified_state.append({"role": "user", "content": text})
        internal_text_state.append({"role": "user", "content": text})
        unified_state.append({"role": "assistant", "content": ""})
        internal_text_state.append({"role": "assistant", "content": ""})
        yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state

        base_conv = internal_text_state[:-1]
        assistant_text = ""
        for chunk in generate(
            text, base_conv,
            temperature=text_temperature,
            repetition_penalty=text_repetition_penalty,
            top_p=text_top_p,
            top_k=text_top_k,
            max_new_tokens=text_max_new_tokens
        ):
            assistant_text += chunk
            unified_state[-1]["content"] = assistant_text
            internal_text_state[-1]["content"] = assistant_text
            yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state

    yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state

# =============================================================================
# Clear Chat Function
# =============================================================================
def clear_chat():
    # Clear unified conversation, vision state, and internal text state.
    return [], [], [], [], "", None    

# =============================================================================
# UI Layout with Gradio
# =============================================================================
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

with gr.Blocks(fill_height=True, css_paths=[str(css_file_path)], head_paths=[str(head_file_path)], theme=theme, title=TITLE) as demo:
    gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
    gr.HTML(DESCRIPTION)

    chatbot = gr.Chatbot(label="Chat History", height=500)

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="pil", label="Upload Image (optional)")
            text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
        with gr.Column(scale=1):
            with gr.Accordion("Text Advanced Settings", open=False):
                text_temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"])
                repetition_penalty_slider = gr.Slider(minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"])
                top_p_slider = gr.Slider(minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"])
                top_k_slider = gr.Slider(minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"])
                max_new_tokens_slider = gr.Slider(minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"])
            with gr.Accordion("Vision Advanced Settings", open=False):
                vision_temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"])
                vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
                vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
                vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])

    send_button = gr.Button("Send Message")
    clear_button = gr.Button("Clear Chat")

    # Conversation state variables:
    # - unified_state: complete conversation for display (text and vision)
    # - vision_state: state for vision turns
    # - internal_text_state: only text turns (for text-generation)
    unified_state = gr.State([])
    vision_state = gr.State([])
    internal_text_state = gr.State([])

    send_button.click(
        send_message,
        inputs=[
            image_input, text_input,
            text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
            vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
            unified_state, vision_state, internal_text_state
        ],
        outputs=[chatbot, unified_state, vision_state, internal_text_state],
    )

    clear_button.click(
        clear_chat,
        inputs=None,
        outputs=[chatbot, unified_state, vision_state, internal_text_state, text_input, image_input]
    )

    gr.Examples(
        examples=[
            ["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
            [None, "Compute Pi."],
            [None, "Explain quantum computing to a beginner."],
            [None, "What is OpenShift?"],
            [None, "Importance of low latency inference"],
            [None, "Boosting productivity habits"],
            [None, "Explain and document your code"],
            [None, "Generate Java Code"]
        ],
        inputs=[image_input, text_input],
        example_labels=[
            "Vision Example: What is in this image?",
            "Compute Pi.",
            "Explain quantum computing",
            "What is OpenShift?",
            "Importance of low latency inference",
            "Boosting productivity habits",
            "Explain and document your code",
            "Generate Java Code"
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.queue().launch(debug=True, share=False)