import gradio as gr # Placeholder for model loading (adjust as needed for your specific models) # In a real application, these would load actual models def load_model(model_name): print(f"Loading {model_name}...") # Indicate model loading # Simulate different model behaviors (replace with actual model logic) if model_name == "DeepSeek-R1-Distill-Qwen-32B": return lambda input_text, history: f"Distilled Model Response to: {input_text}" elif model_name == "DeepSeek-R1": return lambda input_text, history: f"Base Model Response to: {input_text}" elif model_name == "DeepSeek-R1-Zero": return lambda input_text, history: f"Zero Model Response to: {input_text}" else: return lambda input_text, history: f"Default Response to: {input_text}" # Load the models (placeholder functions here) deepseek_r1_distill = load_model("DeepSeek-R1-Distill-Qwen-32B") deepseek_r1 = load_model("DeepSeek-R1") deepseek_r1_zero = load_model("DeepSeek-R1-Zero") # --- Chatbot function --- def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p): history = history or [] print(f"Input: {input_text}, History: {history}, Model: {model_choice}") # Choose the model based on user selection if model_choice == "DeepSeek-R1-Distill-Qwen-32B": model_function = deepseek_r1_distill elif model_choice == "DeepSeek-R1": model_function = deepseek_r1 elif model_choice == "DeepSeek-R1-Zero": model_function = deepseek_r1_zero else: model_function = lambda x, h: "Please select a model." # Simulate model response with parameters (replace with actual model inference) # In a real application, you would pass these parameters to your model response = model_function(input_text, history) response = f"**System Message:** {system_message}\n\n**Model Response:** {response}\n\n" \ f"**Parameters Used:**\n- Max New Tokens: {max_new_tokens}\n- Temperature: {temperature}\n- Top-p: {top_p}" history.append((input_text, response)) return history, history, "" # Update both chatbot output and state # --- Gradio Interface --- with gr.Blocks(theme=gr.themes.Soft()) as demo: # Apply a theme gr.Markdown( """ # DeepSeek Chatbot Created by [ruslanmv.com](https://ruslanmv.com/) This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit". You can also adjust optional parameters like system message, max new tokens, temperature, and top-p. """ ) with gr.Row(): with gr.Column(scale=4): # Make chatbot take more space chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500) msg = gr.Textbox(label="Your Message", placeholder="Type your message here...") with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.ClearButton([msg, chatbot_output]) with gr.Column(scale=1): model_choice = gr.Radio( choices=["DeepSeek-R1-Distill-Qwen-32B", "DeepSeek-R1", "DeepSeek-R1-Zero"], label="Choose a Model", value="DeepSeek-R1" # Default model ) with gr.Accordion("Optional Parameters", open=False): system_message = gr.Textbox( label="System Message", value="You are a friendly Chatbot created by ruslanmv.com", lines=2, ) max_new_tokens = gr.Slider( minimum=1, maximum=4000, value=200, label="Max New Tokens" ) temperature = gr.Slider( minimum=0.10, maximum=4.00, value=0.70, label="Temperature" ) top_p = gr.Slider( minimum=0.10, maximum=1.00, value=0.90, label="Top-p (nucleus sampling)" ) # Maintain chat history chat_history = gr.State([]) # Event handling submit_btn.click( chatbot, [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p], [chatbot_output, chat_history, msg], ) msg.submit( chatbot, [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p], [chatbot_output, chat_history, msg], ) # Launch the demo if __name__ == "__main__": demo.launch()