Spaces:
Running
Running
import streamlit as st | |
from functools import lru_cache | |
import requests | |
# Cache model loading to optimize performance | |
def load_hf_model(model_name): | |
# Use the Hugging Face Inference API directly | |
api_url = f"https://api-inference.huggingface.co/models/deepseek-ai/{model_name}" | |
return api_url | |
# Load all models at startup | |
MODELS = { | |
"DeepSeek-R1-Distill-Qwen-32B": load_hf_model("DeepSeek-R1-Distill-Qwen-32B"), | |
"DeepSeek-R1": load_hf_model("DeepSeek-R1"), | |
"DeepSeek-R1-Zero": load_hf_model("DeepSeek-R1-Zero") | |
} | |
# --- Chatbot function --- | |
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p): | |
history = history or [] | |
# Get the selected model API URL | |
api_url = MODELS[model_choice] | |
# Create payload for the model | |
payload = { | |
"inputs": { | |
"messages": [{"role": "user", "content": input_text}], | |
"system": system_message, | |
"max_tokens": max_new_tokens, | |
"temperature": temperature, | |
"top_p": top_p | |
} | |
} | |
# Run inference using the selected model | |
try: | |
headers = {"Authorization": f"Bearer {st.secrets['HUGGINGFACE_TOKEN']}"} | |
response = requests.post(api_url, headers=headers, json=payload).json() | |
# Handle the response format | |
if isinstance(response, list) and len(response) > 0: | |
# Assuming the response is a list of generated text | |
assistant_response = response[0].get("generated_text", "No response generated.") | |
elif isinstance(response, dict) and "generated_text" in response: | |
# If the response is a dictionary with generated_text | |
assistant_response = response["generated_text"] | |
else: | |
assistant_response = "Unexpected model response format." | |
except Exception as e: | |
assistant_response = f"Error: {str(e)}" | |
# Append user and assistant messages to history | |
history.append((input_text, assistant_response)) | |
return history | |
# --- Streamlit App --- | |
st.set_page_config(page_title="DeepSeek Chatbot", page_icon="🤖", layout="wide") | |
# Title and description | |
st.title("DeepSeek Chatbot") | |
st.markdown(""" | |
Created by [ruslanmv.com](https://ruslanmv.com/) | |
This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit". | |
You can also adjust optional parameters like system message, max new tokens, temperature, and top-p. | |
""") | |
# Sidebar for model selection and parameters | |
with st.sidebar: | |
st.header("Options") | |
model_choice = st.radio( | |
"Choose a Model", | |
options=list(MODELS.keys()), | |
index=0 | |
) | |
st.header("Optional Parameters") | |
system_message = st.text_area( | |
"System Message", | |
value="You are a friendly Chatbot created by ruslanmv.com", | |
height=100 | |
) | |
max_new_tokens = st.slider( | |
"Max New Tokens", | |
min_value=1, | |
max_value=4000, | |
value=200 | |
) | |
temperature = st.slider( | |
"Temperature", | |
min_value=0.10, | |
max_value=4.00, | |
value=0.70 | |
) | |
top_p = st.slider( | |
"Top-p (nucleus sampling)", | |
min_value=0.10, | |
max_value=1.00, | |
value=0.90 | |
) | |
# Initialize chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# Display chat history | |
for user_msg, assistant_msg in st.session_state.chat_history: | |
with st.chat_message("user"): | |
st.write(user_msg) | |
with st.chat_message("assistant"): | |
st.write(assistant_msg) | |
# Input box for user message | |
user_input = st.chat_input("Type your message here...") | |
# Handle user input | |
if user_input: | |
# Add user message to chat history | |
st.session_state.chat_history = chatbot( | |
user_input, | |
st.session_state.chat_history, | |
model_choice, | |
system_message, | |
max_new_tokens, | |
temperature, | |
top_p | |
) | |
# Rerun to update the chat display | |
st.rerun() |