File size: 3,954 Bytes
f1fef64
d9faa8c
317e409
d9faa8c
 
 
9253654
d9faa8c
ef99990
9253654
ef99990
d9faa8c
317e409
d9faa8c
 
 
 
 
 
539566d
f70fc29
 
9253654
ef99990
9253654
d9faa8c
ef99990
d9faa8c
ef99990
 
 
 
 
 
 
 
d9faa8c
9122113
ef99990
 
 
 
 
9122113
d9faa8c
ef99990
 
 
 
d9faa8c
f70fc29
 
d9faa8c
f70fc29
 
 
 
 
 
 
 
 
 
c2dfdca
ab40b57
f70fc29
 
 
 
c2dfdca
 
381d2e1
f70fc29
d9faa8c
f70fc29
c2dfdca
a26f5ee
f70fc29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9faa8c
f70fc29
 
 
 
d9faa8c
317e409
 
f1fef64
ab40b57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
from functools import lru_cache

# Cache model loading to optimize performance
@lru_cache(maxsize=3)
def load_hf_model(model_name):
    # Use the Gradio-built huggingface loader instead of transformers_gradio
    return gr.load(
        name=f"deepseek-ai/{model_name}",
        src="huggingface",  # Changed from transformers_gradio.registry
        api_name="/chat"
    )

# Load all models at startup
MODELS = {
    "DeepSeek-R1-Distill-Qwen-32B": load_hf_model("DeepSeek-R1-Distill-Qwen-32B"),
    "DeepSeek-R1": load_hf_model("DeepSeek-R1"),
    "DeepSeek-R1-Zero": load_hf_model("DeepSeek-R1-Zero")
}

# --- Chatbot function ---
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
    history = history or []
    
    # Get the selected model component
    model_component = MODELS[model_choice]
    
    # Create payload for the model
    payload = {
        "messages": [{"role": "user", "content": input_text}],
        "system": system_message,
        "max_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p
    }
    
    # Run inference using the selected model
    try:
        response = model_component(payload)  # The response is likely a dictionary
        if isinstance(response, dict) and "choices" in response:
            assistant_response = response["choices"][0]["message"]["content"]
        else:
            assistant_response = "Unexpected model response format."
    except Exception as e:
        assistant_response = f"Error: {str(e)}"
    
    # Append user and assistant messages to history
    history.append((input_text, assistant_response))
    
    return history, history, ""

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Chatbot") as demo:
    gr.Markdown(
        """
        # DeepSeek Chatbot
        Created by [ruslanmv.com](https://ruslanmv.com/)
        This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit".
        You can also adjust optional parameters like system message, max new tokens, temperature, and top-p.
        """
    )

    with gr.Row():
        with gr.Column():
            chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500)
            msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
            with gr.Row():
                submit_btn = gr.Button("Submit", variant="primary")
                clear_btn = gr.ClearButton([msg, chatbot_output])

    with gr.Row():
        with gr.Accordion("Options", open=True):
            model_choice = gr.Radio(
                choices=list(MODELS.keys()),
                label="Choose a Model",
                value="DeepSeek-R1"
            )
            with gr.Accordion("Optional Parameters", open=False):
                system_message = gr.Textbox(
                    label="System Message",
                    value="You are a friendly Chatbot created by ruslanmv.com",
                    lines=2,
                )
                max_new_tokens = gr.Slider(
                    minimum=1, maximum=4000, value=200, label="Max New Tokens"
                )
                temperature = gr.Slider(
                    minimum=0.10, maximum=4.00, value=0.70, label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.10, maximum=1.00, value=0.90, label="Top-p (nucleus sampling)"
                )

    chat_history = gr.State([])

    # Event handling
    submit_btn.click(
        chatbot,
        [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
        [chatbot_output, chat_history, msg]
    )
    msg.submit(
        chatbot,
        [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
        [chatbot_output, chat_history, msg]
    )

if __name__ == "__main__":
    demo.launch()