File size: 3,082 Bytes
9ab0176
3ac3046
 
aa2978b
5cbd171
 
 
 
 
3ac3046
aa2978b
5cbd171
 
 
aa2978b
5cbd171
aa2978b
 
6f4957a
e897ba9
 
 
 
 
 
 
 
5cbd171
aa2978b
5cbd171
 
 
6f4957a
aa2978b
 
 
 
6f4957a
aa2978b
 
 
 
6f4957a
aa2978b
 
 
 
5cbd171
189960f
 
 
 
 
 
aa2978b
5cbd171
aa2978b
5cbd171
aa2978b
5cbd171
 
 
 
aa2978b
 
 
6f4957a
5cbd171
aa2978b
5cbd171
 
 
aa2978b
 
 
 
 
 
 
 
 
 
6f4957a
189960f
 
 
e897ba9
189960f
6f4957a
aa2978b
 
 
6f4957a
2c10389
 
5cbd171
2c10389
 
 
5cbd171
 
189960f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import streamlit as st
import requests

# Page configuration
st.set_page_config(
    page_title="DeepSeek Chatbot - ruslanmv.com",
    page_icon="🤖",
    layout="centered"
)

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Sidebar configuration
with st.sidebar:
    st.header("Model Configuration")
    st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")

    # Dropdown to select model
    model_options = [
        "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
        "deepseek-ai/DeepSeek-R1",
        "deepseek-ai/DeepSeek-R1-Zero"
    ]
    selected_model = st.selectbox("Select Model", model_options, index=0)

    system_message = st.text_area(
        "System Message",
        value="You are a friendly Chatbot created by ruslanmv.com",
        height=100
    )

    max_tokens = st.slider(
        "Max Tokens",
        1, 4000, 512
    )

    temperature = st.slider(
        "Temperature",
        0.1, 4.0, 0.7
    )

    top_p = st.slider(
        "Top-p",
        0.1, 1.0, 0.9
    )

# Function to query the Hugging Face API
def query(payload, api_url):
    headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
    response = requests.post(api_url, headers=headers, json=payload)
    return response.json()

# Chat interface
st.title("🤖 DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")

# Display chat history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Handle input
if prompt := st.chat_input("Type your message..."):
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("user"):
        st.markdown(prompt)

    try:
        with st.spinner("Generating response..."):
            # Prepare the payload for the API
            payload = {
                "inputs": prompt,
                "parameters": {
                    "max_new_tokens": max_tokens,
                    "temperature": temperature,
                    "top_p": top_p,
                    "return_full_text": False
                }
            }

            # Dynamically construct the API URL based on the selected model
            api_url = f"https://api-inference.huggingface.co/models/{selected_model}"

            # Query the Hugging Face API using the selected model
            output = query(payload, api_url)

            # Handle API response
            if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
                assistant_response = output[0]['generated_text']

                with st.chat_message("assistant"):
                    st.markdown(assistant_response)

                st.session_state.messages.append({"role": "assistant", "content": assistant_response})
            else:
                st.error("Error: Unable to generate a response. Please try again.")

    except Exception as e:
        st.error(f"Application Error: {str(e)}")