Spaces:
Running
Running
File size: 3,082 Bytes
9ab0176 3ac3046 aa2978b 5cbd171 3ac3046 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a e897ba9 5cbd171 aa2978b 5cbd171 6f4957a aa2978b 6f4957a aa2978b 6f4957a aa2978b 5cbd171 189960f aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a 189960f e897ba9 189960f 6f4957a aa2978b 6f4957a 2c10389 5cbd171 2c10389 5cbd171 189960f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import streamlit as st
import requests
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="🤖",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-Zero"
]
selected_model = st.selectbox("Select Model", model_options, index=0)
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Chat interface
st.title("🤖 DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Dynamically construct the API URL based on the selected model
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
# Query the Hugging Face API using the selected model
output = query(payload, api_url)
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
st.error("Error: Unable to generate a response. Please try again.")
except Exception as e:
st.error(f"Application Error: {str(e)}") |