Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
import os | |
from dotenv import load_dotenv | |
import tempfile | |
import time | |
load_dotenv() | |
## Langsmith Tracking | |
os.environ['LANGCHAIN_API_KEY'] = os.getenv('LANGCHAIN_API_KEY') | |
os.environ['LANGCHAIN_TRACING_V2'] = 'true' | |
os.environ['LANGCHAIN_PROJECT'] = "Simple Q&A RAG With Groq" | |
os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API_KEY') | |
os.environ["HF_TOKEN"] = os.getenv('HF_TOKEN') | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
llm = ChatGroq(model="llama-3.1-70b-Versatile") | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the question based on provided context only. | |
Please provide the most accurate response based on the question | |
<context> | |
{context} | |
</context> | |
Question: {input} | |
""" | |
) | |
def create_vector_embeddings(pdf_file_path): | |
st.session_state.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
st.session_state.loader = PyPDFLoader(pdf_file_path) | |
st.session_state.docs = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) | |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) | |
uploaded_file = st.file_uploader("Upload a PDF", type="pdf", key="pdf_uploader") | |
user_prompt = st.text_input("Enter your Query about PDF here:") | |
if st.button("Document Embedding") and uploaded_file is not None: | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
tmp_file.write(uploaded_file.getvalue()) | |
tmp_file_path = tmp_file.name | |
create_vector_embeddings(tmp_file_path) | |
st.write("Vector Database is ready") | |
if user_prompt and "vectors" in st.session_state: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
start = time.process_time() | |
response = retrieval_chain.invoke({"input": user_prompt}) | |
st.write(f"Response Time: {time.process_time() - start}") | |
st.write(response["answer"]) | |
with st.expander("Document Similarity Search"): | |
for i, doc in enumerate(response["context"]): | |
st.write(doc.page_content) | |
st.write("---------------------------------------") |