import os import random import numpy as np import torch import torch.multiprocessing as mp from .net import Net from .shared_adam import SharedAdam from .worker import Worker def _set_seed(seed: int = 100) -> None: np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # When running on the CuDNN backend, two further options must be set torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Set a fixed value for the hash seed os.environ["PYTHONHASHSEED"] = str(seed) def train( env, max_ep, model_checkpoint_dir, gamma=0.0, seed=100, pretrained_model_path=None, save=False, min_reward=9.9, every_n_save=100, ): os.environ["OMP_NUM_THREADS"] = "1" if not os.path.exists(model_checkpoint_dir): os.makedirs(model_checkpoint_dir) n_s = env.observation_space.shape[0] n_a = env.action_space.n words_list = env.words word_width = len(env.words[0]) # Set global seeds for randoms _set_seed(seed) gnet = Net(n_s, n_a, words_list, word_width) # global network if pretrained_model_path: gnet.load_state_dict(torch.load(pretrained_model_path)) gnet.share_memory() # share the global parameters in multiprocessing opt = SharedAdam( gnet.parameters(), lr=1e-4, betas=(0.92, 0.999) ) # global optimizer global_ep, global_ep_r, res_queue, win_ep = ( mp.Value("i", 0), mp.Value("d", 0.0), mp.Queue(), mp.Value("i", 0), ) # parallel training workers = [ Worker( max_ep, gnet, opt, global_ep, global_ep_r, res_queue, i, env, n_s, n_a, words_list, word_width, win_ep, model_checkpoint_dir, gamma, pretrained_model_path, save, min_reward, every_n_save, ) for i in range(mp.cpu_count()) ] [w.start() for w in workers] res = [] # record episode reward to plot while True: r = res_queue.get() if r is not None: res.append(r) else: break [w.join() for w in workers] if save: torch.save( gnet.state_dict(), os.path.join(model_checkpoint_dir, f"model_{env.unwrapped.spec.id}.pth"), ) return global_ep, win_ep, gnet, res