Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import shutil | |
| import sys | |
| import warnings | |
| import random | |
| import time | |
| import logging | |
| import fal_client | |
| import base64 | |
| import numpy as np | |
| import math | |
| import scipy | |
| import requests | |
| import torch | |
| import torchvision | |
| import gradio as gr | |
| import argparse | |
| import spaces | |
| from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont | |
| from io import BytesIO | |
| from typing import Dict, List, Tuple, Union, Optional | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[logging.StreamHandler()] | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Download model weights only if they don't exist | |
| if not os.path.exists("groundingdino_swint_ogc.pth"): | |
| os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") | |
| if not os.path.exists("sam_hq_vit_l.pth"): | |
| os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth") | |
| # Add paths | |
| sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
| sys.path.append(os.path.join(os.getcwd(), "sam-hq")) | |
| warnings.filterwarnings("ignore") | |
| # Grounding DINO | |
| import GroundingDINO.groundingdino.datasets.transforms as T | |
| from GroundingDINO.groundingdino.models import build_model | |
| from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
| from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
| # segment anything | |
| from segment_anything import build_sam_vit_l, SamPredictor | |
| # Constants | |
| CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' | |
| GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth" | |
| SAM_CHECKPOINT = 'sam_hq_vit_l.pth' | |
| OUTPUT_DIR = "outputs" | |
| # Global variables for model caching | |
| _models = { | |
| 'groundingdino': None, | |
| 'sam_predictor': None | |
| } | |
| # Enable GPU if available with proper error handling | |
| try: | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| logger.info(f"Using device: {device}") | |
| except Exception as e: | |
| logger.warning(f"Error detecting GPU, falling back to CPU: {e}") | |
| device = 'cpu' | |
| class ModelManager: | |
| """Manages model loading, unloading, and provides error handling""" | |
| def load_model(model_name: str) -> None: | |
| """Load a model if not already loaded""" | |
| try: | |
| if model_name == 'groundingdino' and _models['groundingdino'] is None: | |
| logger.info("Loading GroundingDINO model...") | |
| start_time = time.time() | |
| if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
| raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
| args = SLConfig.fromfile(CONFIG_FILE) | |
| args.device = device | |
| model = build_model(args) | |
| checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu") | |
| load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
| logger.info(f"GroundingDINO load result: {load_res}") | |
| _ = model.eval() | |
| _models['groundingdino'] = model | |
| logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds") | |
| elif model_name == 'sam' and _models['sam_predictor'] is None: | |
| logger.info("Loading SAM-HQ model...") | |
| start_time = time.time() | |
| if not os.path.exists(SAM_CHECKPOINT): | |
| raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}") | |
| sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT) | |
| sam.to(device=device) | |
| _models['sam_predictor'] = SamPredictor(sam) | |
| logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds") | |
| except Exception as e: | |
| logger.error(f"Error loading {model_name} model: {e}") | |
| raise RuntimeError(f"Failed to load {model_name} model: {e}") | |
| def get_model(model_name: str): | |
| """Get a model, loading it if necessary""" | |
| if model_name not in _models or _models[model_name] is None: | |
| ModelManager.load_model(model_name) | |
| return _models[model_name] | |
| def unload_model(model_name: str) -> None: | |
| """Unload a model to free memory""" | |
| if model_name in _models and _models[model_name] is not None: | |
| logger.info(f"Unloading {model_name} model") | |
| _models[model_name] = None | |
| if device == 'cuda': | |
| torch.cuda.empty_cache() | |
| def transform_image(image_pil: Image.Image) -> torch.Tensor: | |
| """Transform PIL image for GroundingDINO""" | |
| transform = T.Compose([ | |
| T.RandomResize([800], max_size=1333), | |
| T.ToTensor(), | |
| T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| image, _ = transform(image_pil, None) # 3, h, w | |
| return image | |
| def get_grounding_output( | |
| image: torch.Tensor, | |
| caption: str, | |
| box_threshold: float, | |
| text_threshold: float, | |
| with_logits: bool = True | |
| ) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: | |
| """Run GroundingDINO to get bounding boxes from text prompt""" | |
| try: | |
| model = ModelManager.get_model('groundingdino') | |
| # Format caption | |
| caption = caption.lower().strip() | |
| if not caption.endswith("."): | |
| caption = caption + "." | |
| with torch.no_grad(): | |
| outputs = model(image[None], captions=[caption]) | |
| logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
| boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
| # Filter output | |
| logits_filt = logits.clone() | |
| boxes_filt = boxes.clone() | |
| filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
| logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
| boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
| # Get phrases | |
| tokenizer = model.tokenizer | |
| tokenized = tokenizer(caption) | |
| pred_phrases = [] | |
| scores = [] | |
| for logit, box in zip(logits_filt, boxes_filt): | |
| pred_phrase = get_phrases_from_posmap( | |
| logit > text_threshold, tokenized, tokenizer) | |
| if with_logits: | |
| pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
| else: | |
| pred_phrases.append(pred_phrase) | |
| scores.append(logit.max().item()) | |
| return boxes_filt, torch.Tensor(scores), pred_phrases | |
| except Exception as e: | |
| logger.error(f"Error in grounding output: {e}") | |
| # Return empty results instead of crashing | |
| return torch.Tensor([]), torch.Tensor([]), [] | |
| def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None: | |
| """Draw mask on image""" | |
| color = (255, 255, 255, 255) | |
| nonzero_coords = np.transpose(np.nonzero(mask)) | |
| for coord in nonzero_coords: | |
| draw.point(coord[::-1], fill=color) | |
| def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None: | |
| """Draw bounding box on image""" | |
| color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
| draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2) | |
| if label: | |
| font = ImageFont.load_default() | |
| if hasattr(font, "getbbox"): | |
| bbox = draw.textbbox((box[0], box[1]), str(label), font) | |
| else: | |
| w, h = draw.textsize(str(label), font) | |
| bbox = (box[0], box[1], w + box[0], box[1] + h) | |
| draw.rectangle(bbox, fill=color) | |
| draw.text((box[0], box[1]), str(label), fill="white") | |
| def run_grounded_sam(input_image): | |
| """Main function to run GroundingDINO and SAM-HQ""" | |
| # Create output directory | |
| os.makedirs(OUTPUT_DIR, exist_ok=True) | |
| text_prompt = 'car' | |
| task_type = 'text' | |
| box_threshold = 0.3 | |
| text_threshold = 0.25 | |
| iou_threshold = 0.8 | |
| hq_token_only = True | |
| # Process input image | |
| if isinstance(input_image, dict): | |
| # Input from gradio sketch component | |
| scribble = np.array(input_image["mask"]) | |
| image_pil = input_image["image"].convert("RGB") | |
| else: | |
| # Direct image input | |
| image_pil = input_image.convert("RGB") if input_image else None | |
| scribble = None | |
| if image_pil is None: | |
| logger.error("No input image provided") | |
| return [Image.new('RGB', (400, 300), color='gray')] | |
| # Transform image for GroundingDINO | |
| transformed_image = transform_image(image_pil) | |
| # Load models as needed | |
| ModelManager.load_model('groundingdino') | |
| size = image_pil.size | |
| H, W = size[1], size[0] | |
| # Run GroundingDINO with provided text | |
| boxes_filt, scores, pred_phrases = get_grounding_output( | |
| transformed_image, text_prompt, box_threshold, text_threshold | |
| ) | |
| if boxes_filt is not None: | |
| # Scale boxes to image dimensions | |
| for i in range(boxes_filt.size(0)): | |
| boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
| boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
| boxes_filt[i][2:] += boxes_filt[i][:2] | |
| # Apply non-maximum suppression if we have multiple boxes | |
| if boxes_filt.size(0) > 1: | |
| logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
| nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
| boxes_filt = boxes_filt[nms_idx] | |
| pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
| logger.info(f"After NMS: {boxes_filt.shape[0]} boxes") | |
| # Load SAM model | |
| ModelManager.load_model('sam') | |
| sam_predictor = ModelManager.get_model('sam_predictor') | |
| # Set image for SAM | |
| image = np.array(image_pil) | |
| sam_predictor.set_image(image) | |
| # Run SAM | |
| # Use boxes for these task types | |
| if boxes_filt.size(0) == 0: | |
| logger.warning("No boxes detected") | |
| return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
| transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
| masks, _, _ = sam_predictor.predict_torch( | |
| point_coords=None, | |
| point_labels=None, | |
| boxes=transformed_boxes, | |
| multimask_output=False, | |
| hq_token_only=hq_token_only, | |
| ) | |
| # Create mask image | |
| mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) | |
| mask_draw = ImageDraw.Draw(mask_image) | |
| # Draw masks | |
| for mask in masks: | |
| draw_mask(mask[0].cpu().numpy(), mask_draw) | |
| # Draw boxes and points on original image | |
| image_draw = ImageDraw.Draw(image_pil) | |
| for box, label in zip(boxes_filt, pred_phrases): | |
| draw_box(box, image_draw, label) | |
| return mask_image | |
| # except Exception as e: | |
| # logger.error(f"Error in run_grounded_sam: {e}") | |
| # # Return original image on error | |
| # if isinstance(input_image, dict) and "image" in input_image: | |
| # return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))] | |
| # elif isinstance(input_image, Image.Image): | |
| # return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))] | |
| # else: | |
| # return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))] | |
| def split_image_with_alpha(image): | |
| image = image.convert("RGB") | |
| return image | |
| def gaussian_blur(image, radius=10): | |
| """Apply Gaussian blur to image.""" | |
| blurred = image.filter(ImageFilter.GaussianBlur(radius=10)) | |
| return blurred | |
| def invert_image(image): | |
| img_inverted = ImageOps.invert(image) | |
| return img_inverted | |
| def expand_mask(mask, expand, tapered_corners): | |
| # Ensure mask is in grayscale (mode 'L') | |
| mask = mask.convert("L") | |
| # Convert to NumPy array | |
| mask_np = np.array(mask) | |
| # Define kernel | |
| c = 0 if tapered_corners else 1 | |
| kernel = np.array([[c, 1, c], | |
| [1, 1, 1], | |
| [c, 1, c]], dtype=np.uint8) | |
| # Perform dilation or erosion based on expand value | |
| if expand > 0: | |
| for _ in range(expand): | |
| mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel) | |
| elif expand < 0: | |
| for _ in range(abs(expand)): | |
| mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel) | |
| # Convert back to PIL image | |
| return Image.fromarray(mask_np, mode="L") | |
| def image_blend_by_mask(image_a, image_b, mask, blend_percentage): | |
| # Ensure images have the same size and mode | |
| image_a = image_a.convert('RGB') | |
| image_b = image_b.convert('RGB') | |
| mask = mask.convert('L') | |
| # Resize images if they don't match | |
| if image_a.size != image_b.size: | |
| image_b = image_b.resize(image_a.size, Image.LANCZOS) | |
| # Ensure mask has the same size | |
| if mask.size != image_a.size: | |
| mask = mask.resize(image_a.size, Image.LANCZOS) | |
| # Invert mask | |
| mask = ImageOps.invert(mask) | |
| # Mask image | |
| masked_img = Image.composite(image_a, image_b, mask) | |
| # Blend image | |
| blend_mask = Image.new(mode="L", size=image_a.size, | |
| color=(round(blend_percentage * 255))) | |
| blend_mask = ImageOps.invert(blend_mask) | |
| img_result = Image.composite(image_a, masked_img, blend_mask) | |
| del image_a, image_b, blend_mask, mask | |
| return img_result | |
| def blend_images(image_a, image_b, blend_percentage): | |
| """Blend img_b over image_a using the normal mode with a blend percentage.""" | |
| img_a = image_a.convert("RGBA") | |
| img_b = image_b.convert("RGBA") | |
| # Blend img_b over img_a using alpha_composite (normal blend mode) | |
| out_image = Image.alpha_composite(img_a, img_b) | |
| out_image = out_image.convert("RGB") | |
| # Create blend mask | |
| blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255)) | |
| blend_mask = ImageOps.invert(blend_mask) # Invert the mask | |
| # Apply composite blend | |
| result = Image.composite(image_a, out_image, blend_mask) | |
| return result | |
| def apply_image_levels(image, black_level, mid_level, white_level): | |
| levels = AdjustLevels(black_level, mid_level, white_level) | |
| adjusted_image = levels.adjust(image) | |
| return adjusted_image | |
| class AdjustLevels: | |
| def __init__(self, min_level, mid_level, max_level): | |
| self.min_level = min_level | |
| self.mid_level = mid_level | |
| self.max_level = max_level | |
| def adjust(self, im): | |
| im_arr = np.array(im).astype(np.float32) | |
| im_arr[im_arr < self.min_level] = self.min_level | |
| im_arr = (im_arr - self.min_level) * \ | |
| (255 / (self.max_level - self.min_level)) | |
| im_arr = np.clip(im_arr, 0, 255) | |
| # mid-level adjustment | |
| gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level)) | |
| im_arr = np.power(im_arr / 255, gamma) * 255 | |
| im_arr = im_arr.astype(np.uint8) | |
| im = Image.fromarray(im_arr) | |
| return im | |
| def resize_image(image, scaling_factor=1): | |
| image = image.resize((int(image.width * scaling_factor), | |
| int(image.height * scaling_factor))) | |
| return image | |
| def resize_to_square(image, size=1024): | |
| # Load image if a file path is provided | |
| if isinstance(image, str): | |
| img = Image.open(image).convert("RGBA") | |
| else: | |
| img = image.convert("RGBA") # If already an Image object | |
| # Resize while maintaining aspect ratio | |
| img.thumbnail((size, size), Image.LANCZOS) | |
| # Create a transparent square canvas | |
| square_img = Image.new("RGBA", (size, size), (0, 0, 0, 0)) | |
| # Calculate the position to paste the resized image (centered) | |
| x_offset = (size - img.width) // 2 | |
| y_offset = (size - img.height) // 2 | |
| # Extract the alpha channel as a mask | |
| mask = img.split()[3] if img.mode == "RGBA" else None | |
| # Paste the resized image onto the square canvas with the correct transparency mask | |
| square_img.paste(img, (x_offset, y_offset), mask) | |
| return square_img | |
| def encode_image(image): | |
| buffer = BytesIO() | |
| image.save(buffer, format="PNG") | |
| encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8") | |
| return f"data:image/png;base64,{encoded_image}" | |
| def generate_ai_bg(input_img, prompt): | |
| # input_img = resize_image(input_img, 0.01) | |
| hf_input_img = encode_image(input_img) | |
| handler = fal_client.submit( | |
| "fal-ai/iclight-v2", | |
| arguments={ | |
| "prompt": prompt, | |
| "image_url": hf_input_img | |
| }, | |
| webhook_url="https://optional.webhook.url/for/results", | |
| ) | |
| request_id = handler.request_id | |
| status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True) | |
| result = fal_client.result("fal-ai/iclight-v2", request_id) | |
| relight_img_path = result['images'][0]['url'] | |
| response = requests.get(relight_img_path, stream=True) | |
| relight_img = Image.open(BytesIO(response.content)).convert("RGBA") | |
| # from gradio_client import Client, handle_file | |
| # client = Client("lllyasviel/iclight-v2-vary") | |
| # result = client.predict( | |
| # input_fg=handle_file(input_img), | |
| # bg_source="None", | |
| # prompt=prompt, | |
| # image_width=256, | |
| # image_height=256, | |
| # num_samples=1, | |
| # seed=12345, | |
| # steps=25, | |
| # n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality", | |
| # cfg=2, | |
| # gs=5, | |
| # enable_hr_fix=True, | |
| # hr_downscale=0.5, | |
| # lowres_denoise=0.8, | |
| # highres_denoise=0.99, | |
| # api_name="/process" | |
| # ) | |
| # print(result) | |
| # relight_img_path = result[0][0]['image'] | |
| # relight_img = Image.open(relight_img_path).convert("RGBA") | |
| return relight_img | |
| def blend_details(input_image, relit_image, masked_image, scaling_factor=1): | |
| # input_image = resize_image(input_image) | |
| # relit_image = resize_image(relit_image) | |
| # masked_image = resize_image(masked_image) | |
| masked_image_rgb = split_image_with_alpha(masked_image) | |
| masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10) | |
| grow_mask = expand_mask(masked_image_blurred, -15, True) | |
| # grow_mask.save("output/grow_mask.png") | |
| # Split images and get RGB channels | |
| input_image_rgb = split_image_with_alpha(input_image) | |
| input_blurred = gaussian_blur(input_image_rgb, radius=10) | |
| input_inverted = invert_image(input_image_rgb) | |
| # input_blurred.save("output/input_blurred.png") | |
| # input_inverted.save("output/input_inverted.png") | |
| # Add blurred and inverted images | |
| input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5) | |
| input_blend_1_inverted = invert_image(input_blend_1) | |
| input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0) | |
| # input_blend_2.save("output/input_blend_2.png") | |
| # Process relit image | |
| relit_image_rgb = split_image_with_alpha(relit_image) | |
| relit_blurred = gaussian_blur(relit_image_rgb, radius=10) | |
| relit_inverted = invert_image(relit_image_rgb) | |
| # relit_blurred.save("output/relit_blurred.png") | |
| # relit_inverted.save("output/relit_inverted.png") | |
| # Add blurred and inverted relit images | |
| relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5) | |
| relit_blend_1_inverted = invert_image(relit_blend_1) | |
| relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0) | |
| # relit_blend_2.save("output/relit_blend_2.png") | |
| high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0) | |
| # high_freq_comp.save("output/high_freq_comp.png") | |
| comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65) | |
| # comped_image.save("output/comped_image.png") | |
| final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172) | |
| # final_image.save("output/final_image.png") | |
| return final_image | |
| def generate_image(input_image_path, prompt): | |
| resized_input_img = resize_to_square(input_image_path, 256) | |
| resized_input_img_path = '/tmp/gradio/resized_input_img.png' | |
| resized_input_img.convert("RGBA").save(resized_input_img_path, "PNG") | |
| ai_gen_image = generate_ai_bg(resized_input_img, prompt) | |
| # mask_input_image = run_grounded_sam(resized_input_img) | |
| # final_image = blend_details(resized_input_img, ai_gen_image, mask_input_image) | |
| final_image = ai_gen_image | |
| return final_image | |
| def create_ui(): | |
| """Create Gradio UI for CarViz demo""" | |
| with gr.Blocks(title="CarViz Demo") as block: | |
| gr.Markdown(""" | |
| # CarViz | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_path = gr.Image(type="filepath", label="image") | |
| # ai_image = gr.Image(type="pil", label="image") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
| run_button = gr.Button(value='Run') | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image") | |
| # Run button | |
| run_button.click( | |
| fn=generate_image, | |
| inputs=[ | |
| input_image_path, | |
| # ai_image, | |
| prompt | |
| ], | |
| outputs=[output_image] | |
| ) | |
| return block | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser("Carviz demo", add_help=True) | |
| parser.add_argument("--debug", action="store_true", help="using debug mode") | |
| parser.add_argument("--share", action="store_true", help="share the app") | |
| parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue") | |
| parser.add_argument('--port', type=int, default=7860, help="port to run the app") | |
| parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app") | |
| args = parser.parse_args() | |
| logger.info(f"Starting CarViz demo with args: {args}") | |
| # Check for model files | |
| if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
| logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
| if not os.path.exists(SAM_CHECKPOINT): | |
| logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}") | |
| # Create app | |
| block = create_ui() | |
| if not args.no_gradio_queue: | |
| block = block.queue() | |
| # Launch app | |
| try: | |
| block.launch( | |
| debug=args.debug, | |
| share=args.share, | |
| show_error=True, | |
| server_name=args.host, | |
| server_port=args.port | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error launching app: {e}") | |