Spaces:
Runtime error
Runtime error
Ron Au
commited on
Commit
·
61d63d5
1
Parent(s):
0731409
Initial Commit
Browse files- app.py +30 -8
- dataset.py +19 -0
- index.html +0 -0
- index.js +89 -11
- inference.py +5 -4
- style.css +39 -5
app.py
CHANGED
|
@@ -4,11 +4,13 @@ import requests
|
|
| 4 |
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
|
| 5 |
from urllib.parse import parse_qs, urlparse
|
| 6 |
|
| 7 |
-
from inference import
|
|
|
|
| 8 |
|
| 9 |
# https://huggingface.co/settings/tokens
|
| 10 |
# https://huggingface.co/spaces/{username}/{space}/settings
|
| 11 |
-
API_TOKEN = os.getenv(
|
|
|
|
| 12 |
|
| 13 |
class RequestHandler(SimpleHTTPRequestHandler):
|
| 14 |
def do_GET(self):
|
|
@@ -17,14 +19,16 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 17 |
|
| 18 |
return SimpleHTTPRequestHandler.do_GET(self)
|
| 19 |
|
| 20 |
-
if self.path.startswith("/
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
output = requests.request(
|
| 24 |
"POST",
|
| 25 |
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
| 26 |
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
| 27 |
-
data=json.dumps(input)
|
| 28 |
)
|
| 29 |
|
| 30 |
self.send_response(200)
|
|
@@ -35,10 +39,28 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 35 |
|
| 36 |
return SimpleHTTPRequestHandler
|
| 37 |
|
| 38 |
-
elif self.path.startswith("/
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
output =
|
| 42 |
|
| 43 |
self.send_response(200)
|
| 44 |
self.send_header("Content-Type", "application/json")
|
|
|
|
| 4 |
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
|
| 5 |
from urllib.parse import parse_qs, urlparse
|
| 6 |
|
| 7 |
+
from inference import infer_t5
|
| 8 |
+
from dataset import query_emotion
|
| 9 |
|
| 10 |
# https://huggingface.co/settings/tokens
|
| 11 |
# https://huggingface.co/spaces/{username}/{space}/settings
|
| 12 |
+
API_TOKEN = os.getenv("BIG_GAN_TOKEN")
|
| 13 |
+
|
| 14 |
|
| 15 |
class RequestHandler(SimpleHTTPRequestHandler):
|
| 16 |
def do_GET(self):
|
|
|
|
| 19 |
|
| 20 |
return SimpleHTTPRequestHandler.do_GET(self)
|
| 21 |
|
| 22 |
+
if self.path.startswith("/infer_biggan"):
|
| 23 |
+
url = urlparse(self.path)
|
| 24 |
+
query = parse_qs(url.query)
|
| 25 |
+
input = query.get("input", None)[0]
|
| 26 |
|
| 27 |
output = requests.request(
|
| 28 |
"POST",
|
| 29 |
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
| 30 |
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
| 31 |
+
data=json.dumps(input),
|
| 32 |
)
|
| 33 |
|
| 34 |
self.send_response(200)
|
|
|
|
| 39 |
|
| 40 |
return SimpleHTTPRequestHandler
|
| 41 |
|
| 42 |
+
elif self.path.startswith("/infer_t5"):
|
| 43 |
+
url = urlparse(self.path)
|
| 44 |
+
query = parse_qs(url.query)
|
| 45 |
+
input = query.get("input", None)[0]
|
| 46 |
+
|
| 47 |
+
output = infer_t5(input)
|
| 48 |
+
|
| 49 |
+
self.send_response(200)
|
| 50 |
+
self.send_header("Content-Type", "application/json")
|
| 51 |
+
self.end_headers()
|
| 52 |
+
|
| 53 |
+
self.wfile.write(json.dumps({"output": output}).encode("utf-8"))
|
| 54 |
+
|
| 55 |
+
return SimpleHTTPRequestHandler
|
| 56 |
+
|
| 57 |
+
elif self.path.startswith("/query_emotion"):
|
| 58 |
+
url = urlparse(self.path)
|
| 59 |
+
query = parse_qs(url.query)
|
| 60 |
+
start = int(query.get("start", None)[0])
|
| 61 |
+
end = int(query.get("end", None)[0])
|
| 62 |
|
| 63 |
+
output = query_emotion(start, end)
|
| 64 |
|
| 65 |
self.send_response(200)
|
| 66 |
self.send_header("Content-Type", "application/json")
|
dataset.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
|
| 3 |
+
dataset = load_dataset("emotion", split="train")
|
| 4 |
+
|
| 5 |
+
emotions = dataset.info.features["label"].names
|
| 6 |
+
|
| 7 |
+
def query_emotion(start, end):
|
| 8 |
+
rows = dataset[start:end]
|
| 9 |
+
texts, labels = [rows[k] for k in rows.keys()]
|
| 10 |
+
|
| 11 |
+
observations = []
|
| 12 |
+
|
| 13 |
+
for i, text in enumerate(texts):
|
| 14 |
+
observations.append({
|
| 15 |
+
"text": text,
|
| 16 |
+
"emotion": emotions[labels[i]],
|
| 17 |
+
})
|
| 18 |
+
|
| 19 |
+
return observations
|
index.html
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
index.js
CHANGED
|
@@ -1,26 +1,74 @@
|
|
| 1 |
-
if (document.location.search.includes(
|
| 2 |
-
document.body.classList.add(
|
| 3 |
}
|
| 4 |
|
| 5 |
const textToImage = async (text) => {
|
| 6 |
-
const inferenceResponse = await fetch(
|
| 7 |
const inferenceBlob = await inferenceResponse.blob();
|
| 8 |
|
| 9 |
return URL.createObjectURL(inferenceBlob);
|
| 10 |
};
|
| 11 |
|
| 12 |
const translateText = async (text) => {
|
| 13 |
-
const inferResponse = await fetch(
|
| 14 |
const inferJson = await inferResponse.json();
|
| 15 |
|
| 16 |
return inferJson.output;
|
| 17 |
};
|
| 18 |
|
| 19 |
-
const
|
| 20 |
-
const
|
| 21 |
-
const
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
const value = event.target.value;
|
| 25 |
|
| 26 |
try {
|
|
@@ -30,11 +78,11 @@ imageGenSelect.addEventListener("change", async (event) => {
|
|
| 30 |
}
|
| 31 |
});
|
| 32 |
|
| 33 |
-
textGenForm.addEventListener(
|
| 34 |
event.preventDefault();
|
| 35 |
|
| 36 |
-
const textGenInput = document.getElementById(
|
| 37 |
-
const textGenParagraph = document.querySelector(
|
| 38 |
|
| 39 |
try {
|
| 40 |
textGenParagraph.textContent = await translateText(textGenInput.value);
|
|
@@ -43,6 +91,36 @@ textGenForm.addEventListener("submit", async (event) => {
|
|
| 43 |
}
|
| 44 |
});
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
textToImage(imageGenSelect.value)
|
| 47 |
.then((image) => (imageGenImage.src = image))
|
| 48 |
.catch(console.error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if (document.location.search.includes('dark-theme=true')) {
|
| 2 |
+
document.body.classList.add('dark-theme');
|
| 3 |
}
|
| 4 |
|
| 5 |
const textToImage = async (text) => {
|
| 6 |
+
const inferenceResponse = await fetch(`/infer_biggan?input=${text}`);
|
| 7 |
const inferenceBlob = await inferenceResponse.blob();
|
| 8 |
|
| 9 |
return URL.createObjectURL(inferenceBlob);
|
| 10 |
};
|
| 11 |
|
| 12 |
const translateText = async (text) => {
|
| 13 |
+
const inferResponse = await fetch(`/infer_t5?input=${text}`);
|
| 14 |
const inferJson = await inferResponse.json();
|
| 15 |
|
| 16 |
return inferJson.output;
|
| 17 |
};
|
| 18 |
|
| 19 |
+
const queryDataset = async (start, end) => {
|
| 20 |
+
const queryResponse = await fetch(`/query_emotion?start=${start}&end=${end}`);
|
| 21 |
+
const queryJson = await queryResponse.json();
|
| 22 |
|
| 23 |
+
return queryJson.output;
|
| 24 |
+
};
|
| 25 |
+
|
| 26 |
+
const updateTable = async (cursor, range = 5) => {
|
| 27 |
+
const table = document.querySelector('.dataset-output');
|
| 28 |
+
|
| 29 |
+
const fragment = new DocumentFragment();
|
| 30 |
+
|
| 31 |
+
const observations = await queryDataset(cursor, cursor + range);
|
| 32 |
+
|
| 33 |
+
for (const observation of observations) {
|
| 34 |
+
let row = document.createElement('tr');
|
| 35 |
+
let text = document.createElement('td');
|
| 36 |
+
let emotion = document.createElement('td');
|
| 37 |
+
|
| 38 |
+
text.textContent = observation.text;
|
| 39 |
+
emotion.textContent = observation.emotion;
|
| 40 |
+
|
| 41 |
+
row.appendChild(text);
|
| 42 |
+
row.appendChild(emotion);
|
| 43 |
+
fragment.appendChild(row);
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
table.innerHTML = '';
|
| 47 |
+
|
| 48 |
+
table.appendChild(fragment);
|
| 49 |
+
|
| 50 |
+
table.insertAdjacentHTML(
|
| 51 |
+
'afterbegin',
|
| 52 |
+
`<thead>
|
| 53 |
+
<tr>
|
| 54 |
+
<td>text</td>
|
| 55 |
+
<td>emotion</td>
|
| 56 |
+
</tr>
|
| 57 |
+
</thead>`
|
| 58 |
+
);
|
| 59 |
+
};
|
| 60 |
+
|
| 61 |
+
const imageGenSelect = document.getElementById('image-gen-input');
|
| 62 |
+
const imageGenImage = document.querySelector('.image-gen-output');
|
| 63 |
+
const textGenForm = document.querySelector('.text-gen-form');
|
| 64 |
+
const tableButtonPrev = document.querySelector('.table-previous');
|
| 65 |
+
const tableButtonNext = document.querySelector('.table-next');
|
| 66 |
+
|
| 67 |
+
let cursor = 0;
|
| 68 |
+
const RANGE = 5;
|
| 69 |
+
const LIMIT = 16_000;
|
| 70 |
+
|
| 71 |
+
imageGenSelect.addEventListener('change', async (event) => {
|
| 72 |
const value = event.target.value;
|
| 73 |
|
| 74 |
try {
|
|
|
|
| 78 |
}
|
| 79 |
});
|
| 80 |
|
| 81 |
+
textGenForm.addEventListener('submit', async (event) => {
|
| 82 |
event.preventDefault();
|
| 83 |
|
| 84 |
+
const textGenInput = document.getElementById('text-gen-input');
|
| 85 |
+
const textGenParagraph = document.querySelector('.text-gen-output');
|
| 86 |
|
| 87 |
try {
|
| 88 |
textGenParagraph.textContent = await translateText(textGenInput.value);
|
|
|
|
| 91 |
}
|
| 92 |
});
|
| 93 |
|
| 94 |
+
tableButtonPrev.addEventListener('click', () => {
|
| 95 |
+
cursor = cursor > RANGE ? cursor - RANGE : 0;
|
| 96 |
+
|
| 97 |
+
if (cursor < RANGE) {
|
| 98 |
+
tableButtonPrev.classList.add('hidden');
|
| 99 |
+
}
|
| 100 |
+
if (cursor < LIMIT - RANGE) {
|
| 101 |
+
tableButtonNext.classList.remove('hidden');
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
updateTable(cursor);
|
| 105 |
+
});
|
| 106 |
+
|
| 107 |
+
tableButtonNext.addEventListener('click', () => {
|
| 108 |
+
cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
|
| 109 |
+
|
| 110 |
+
if (cursor >= RANGE) {
|
| 111 |
+
tableButtonPrev.classList.remove('hidden');
|
| 112 |
+
}
|
| 113 |
+
if (cursor >= LIMIT - RANGE) {
|
| 114 |
+
tableButtonNext.classList.add('hidden');
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
updateTable(cursor);
|
| 118 |
+
});
|
| 119 |
+
|
| 120 |
textToImage(imageGenSelect.value)
|
| 121 |
.then((image) => (imageGenImage.src = image))
|
| 122 |
.catch(console.error);
|
| 123 |
+
|
| 124 |
+
updateTable(cursor)
|
| 125 |
+
.then((image) => (imageGenImage.src = image))
|
| 126 |
+
.catch(console.error);
|
inference.py
CHANGED
|
@@ -3,8 +3,9 @@ from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
| 3 |
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
| 4 |
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
| 5 |
|
| 6 |
-
def t5_infer(input):
|
| 7 |
-
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
| 8 |
-
outputs = model.generate(input_ids)
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
| 4 |
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def infer_t5(input):
|
| 8 |
+
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
| 9 |
+
outputs = model.generate(input_ids)
|
| 10 |
+
|
| 11 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
style.css
CHANGED
|
@@ -12,11 +12,14 @@ body.dark-theme {
|
|
| 12 |
}
|
| 13 |
|
| 14 |
main {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
display: flex;
|
| 16 |
flex-direction: column;
|
| 17 |
align-items: center;
|
| 18 |
-
max-width: 80rem;
|
| 19 |
-
text-align: center;
|
| 20 |
}
|
| 21 |
|
| 22 |
a {
|
|
@@ -40,9 +43,40 @@ input {
|
|
| 40 |
width: 70%;
|
| 41 |
}
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
.text-gen-output {
|
| 44 |
-
min-height:
|
| 45 |
-
margin:
|
| 46 |
align-self: start;
|
| 47 |
-
border:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
}
|
|
|
|
| 12 |
}
|
| 13 |
|
| 14 |
main {
|
| 15 |
+
max-width: 80rem;
|
| 16 |
+
text-align: center;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
section {
|
| 20 |
display: flex;
|
| 21 |
flex-direction: column;
|
| 22 |
align-items: center;
|
|
|
|
|
|
|
| 23 |
}
|
| 24 |
|
| 25 |
a {
|
|
|
|
| 43 |
width: 70%;
|
| 44 |
}
|
| 45 |
|
| 46 |
+
button {
|
| 47 |
+
cursor: pointer;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
.text-gen-output {
|
| 51 |
+
min-height: 1.2rem;
|
| 52 |
+
margin: 1rem;
|
| 53 |
align-self: start;
|
| 54 |
+
border: 0.5px solid grey;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
#dataset button {
|
| 58 |
+
width: 6rem;
|
| 59 |
+
margin: 0.5rem;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
#dataset button.hidden {
|
| 63 |
+
visibility: hidden;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
table {
|
| 67 |
+
max-width: 40rem;
|
| 68 |
+
text-align: left;
|
| 69 |
+
border-collapse: collapse;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
thead {
|
| 73 |
+
font-weight: bold;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
td {
|
| 77 |
+
padding: 0.5rem;
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
td:not(thead td) {
|
| 81 |
+
border: 0.5px solid grey;
|
| 82 |
}
|