multitts / inference_cli.py
Gregniuki's picture
Create inference_cli.py
c91fbe6 verified
raw
history blame
42.3 kB
import argparse
import codecs
import re
import tempfile
from pathlib import Path
import logging
import numpy as np
import soundfile as sf
import tomli
import torch
import torchaudio
from tqdm import tqdm
from einops import rearrange
from pydub import AudioSegment, silence
from transformers import pipeline
from huggingface_hub import login
from cached_path import cached_path
import matplotlib.pyplot as plt # Needed for save_spectrogram
# --- Import Model Architectures ---
# !! Ensure these models are defined in your project's 'model' module !!
try:
from model import UNetT, DiT
except ImportError:
print("Warning: Could not import UNetT, DiT from 'model'. Using placeholders.")
# Placeholder classes if import fails (script might not work correctly)
class MockModel:
def __init__(self, *args, **kwargs): pass
def to(self, device): return self
def eval(self): pass
def sample(self, *args, **kwargs):
duration = kwargs.get('duration', 500); mel_dim = 100
return torch.randn(1, duration, mel_dim), None
@property
def device(self): return torch.device("cpu")
DiT = MockModel
UNetT = MockModel
# --- Import/Define Utility Functions ---
from tokenizers import Tokenizer
from phonemizer import phonemize
# --- Functions copied/adapted from app.py ---
# Function to load vocoder (from app.py context, may need adjustment)
def load_vocoder(device='cpu'):
"""Loads the Vocos vocoder."""
print("Loading Vocos vocoder (charactr/vocos-mel-24khz)...")
try:
# Ensure vocos library is installed: pip install vocos
from vocos import Vocos
# Determine torch dtype based on device for potential efficiency
# Note: Vocos might internally cast, but being explicit can help.
# Using float32 as a safe default unless on CUDA where float16 might work.
vocos_dtype = torch.float16 if str(device) == 'cuda' else torch.float32
vocos_model = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
# Cast to appropriate dtype if needed, although Vocos might handle this.
# vocos_model = vocos_model.to(dtype=vocos_dtype) # Optional casting
vocos_model.eval()
print("Vocos vocoder loaded successfully.")
return vocos_model
except ImportError:
print("Error: 'vocos' library not found. Please install it: pip install vocos")
raise
except Exception as e:
print(f"Error loading Vocos model: {e}")
raise
# Function to remove silence from edges (from app.py)
def remove_silence_edges(aseg):
"""Removes silence from the beginning and end of an AudioSegment."""
print("Removing silence from audio edges...")
start_trim = silence.detect_leading_silence(aseg)
end_trim = silence.detect_leading_silence(aseg.reverse())
duration = len(aseg)
trimmed_aseg = aseg[start_trim:duration-end_trim]
print(f"Removed {start_trim}ms from start, {end_trim}ms from end.")
return trimmed_aseg
# Function to save spectrogram (from app.py)
def save_spectrogram(spectrogram, file_path):
"""Saves a spectrogram visualization to a file."""
if spectrogram is None:
print("Spectrogram data is None, cannot save.")
return
try:
print(f"Saving spectrogram to {file_path}...")
plt.figure(figsize=(10, 4))
plt.imshow(spectrogram, aspect='auto', origin='lower', cmap='viridis')
plt.colorbar(label='Mel power')
plt.xlabel('Frames')
plt.ylabel('Mel bins')
plt.title('Generated Mel Spectrogram')
plt.tight_layout()
plt.savefig(file_path)
plt.close() # Close the figure to free memory
print("Spectrogram saved.")
except Exception as e:
print(f"Error saving spectrogram: {e}")
# Helper function to load checkpoint (from app.py, slightly modified for CLI)
def load_checkpoint(model, ckpt_path, device, use_ema=False):
"""Loads model weights from a checkpoint file (.pt or .safetensors)."""
print(f"Loading checkpoint from {ckpt_path}...")
try:
if ckpt_path.endswith(".safetensors"):
# Ensure safetensors is installed: pip install safetensors
from safetensors.torch import load_file
state_dict = load_file(ckpt_path, device="cpu")
elif ckpt_path.endswith(".pt"):
state_dict = torch.load(ckpt_path, map_location="cpu")
else:
raise ValueError(f"Unsupported checkpoint format: {ckpt_path}. Must be .pt or .safetensors")
# Standardize state_dict format (e.g., remove 'state_dict' key if present)
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
# Handle EMA weights
ema_key_prefix = "ema_model." # Adjust if your EMA keys have a different prefix
final_state_dict = {}
has_ema = any(k.startswith(ema_key_prefix) for k in state_dict.keys())
if use_ema:
if has_ema:
print("Attempting to load EMA weights.")
ema_state_dict = {k[len(ema_key_prefix):]: v for k, v in state_dict.items() if k.startswith(ema_key_prefix)}
if ema_state_dict:
final_state_dict = ema_state_dict
print("Using EMA weights.")
else:
# This case shouldn't happen if has_ema is true, but as a safeguard:
print("Warning: EMA weights requested but none found starting with prefix. Using regular weights.")
final_state_dict = {k: v for k, v in state_dict.items() if not k.startswith(ema_key_prefix)}
else:
print("Warning: EMA weights requested but no keys found with EMA prefix. Using regular weights.")
final_state_dict = state_dict # Use the original dict if no EMA keys exist
else:
print("Loading non-EMA weights.")
# Filter out EMA weights if they exist and we explicitly don't want them
final_state_dict = {k: v for k, v in state_dict.items() if not k.startswith(ema_key_prefix)}
# Load into model, handling potential 'module.' prefix from DDP
model_state_dict = model.state_dict()
processed_state_dict = {}
for k, v in final_state_dict.items():
if k.startswith("module."):
k_proc = k[len("module."):]
else:
k_proc = k
if k_proc in model_state_dict:
if model_state_dict[k_proc].shape == v.shape:
processed_state_dict[k_proc] = v
else:
print(f"Warning: Shape mismatch for key {k_proc}. Checkpoint: {v.shape}, Model: {model_state_dict[k_proc].shape}. Skipping.")
# else: # Optional: Log unexpected keys
# print(f"Warning: Key {k_proc} from checkpoint not found in model. Skipping.")
missing_keys, unexpected_keys = model.load_state_dict(processed_state_dict, strict=False)
if missing_keys:
print(f"Warning: Missing keys in model not found in checkpoint: {missing_keys}")
if unexpected_keys:
# This should ideally be empty if we filter correctly, but good to check.
print(f"Warning: Unexpected keys (should not happen with filtering): {unexpected_keys}")
print(f"Checkpoint loaded successfully from {ckpt_path}")
except FileNotFoundError:
print(f"Error: Checkpoint file not found at {ckpt_path}")
raise
except Exception as e:
print(f"Error loading checkpoint from {ckpt_path}: {e}")
raise # Re-raise the exception
model.eval()
return model.to(device)
# Primary model loading function (from app.py)
def load_custom(model_cls, model_cfg, ckpt_path: str, vocab_size: int, device='cpu', use_ema=True):
"""Loads a custom TTS model (DiT or UNetT) with specified config and checkpoint."""
ckpt_path = ckpt_path.strip()
if ckpt_path.startswith("hf://"):
print(f"Downloading checkpoint from Hugging Face Hub: {ckpt_path}")
try:
ckpt_path = str(cached_path(ckpt_path))
print(f"Checkpoint downloaded to: {ckpt_path}")
except Exception as e:
print(f"Error downloading checkpoint {ckpt_path}: {e}")
raise
if not Path(ckpt_path).exists():
raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}")
# Ensure necessary config keys are present (add defaults if missing)
if 'mel_dim' not in model_cfg:
model_cfg['mel_dim'] = 100 # Default mel channels
print(f"Warning: 'mel_dim' not in model_cfg, defaulting to {model_cfg['mel_dim']}")
if 'text_num_embeds' not in model_cfg:
model_cfg['text_num_embeds'] = vocab_size
print(f"Setting 'text_num_embeds' in model_cfg to vocab size: {vocab_size}")
print(f"Instantiating model: {model_cls.__name__} with config: {model_cfg}")
try:
model = model_cls(**model_cfg).to(device) # Instantiate the model
except Exception as e:
print(f"Error instantiating model {model_cls.__name__} with config {model_cfg}: {e}")
raise
# Load weights using the helper function
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
model.eval() # Ensure model is in evaluation mode
return model
# Text chunking function (from app.py)
def chunk_text(text, max_chars):
"""
Splits the input text into chunks based on punctuation and length limits.
(Copied from previous answer, assumed correct)
"""
if not isinstance(text, str):
print("Warning: Input to chunk_text is not a string. Returning empty list.")
return []
if max_chars > 135:
print(f"Warning: Calculated max_chars ({max_chars}) > 135. Capping at 135.")
max_chars = 135
if max_chars < 50:
print(f"Warning: Calculated max_chars ({max_chars}) < 50. Setting to 50.")
max_chars = 50
split_after_space_chars = max_chars + int(max_chars * 0.33)
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])\s*", text) # Added \s* after CJK punc
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
# Estimate potential length increase due to space
estimated_len = len(current_chunk) + len(sentence) + (1 if current_chunk else 0)
if estimated_len <= max_chars:
current_chunk += (" " + sentence) if current_chunk else sentence
else:
# Process the current_chunk if adding the new sentence exceeds max_chars
while len(current_chunk) > split_after_space_chars:
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
if split_index == -1: split_index = split_after_space_chars
chunks.append(current_chunk[:split_index].strip())
current_chunk = current_chunk[split_index:].strip()
if current_chunk:
chunks.append(current_chunk)
# Start new chunk, handle if sentence itself is too long
while len(sentence) > split_after_space_chars:
split_index = sentence.rfind(" ", 0, split_after_space_chars)
if split_index == -1: split_index = split_after_space_chars
chunks.append(sentence[:split_index].strip())
sentence = sentence[split_index:].strip()
current_chunk = sentence
# Handle the last chunk
while len(current_chunk) > split_after_space_chars:
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
if split_index == -1: split_index = split_after_space_chars
chunks.append(current_chunk[:split_index].strip())
current_chunk = current_chunk[split_index:].strip()
if current_chunk:
chunks.append(current_chunk.strip())
return [c for c in chunks if c] # Filter empty chunks
# Text to IPA function (from app.py)
def text_to_ipa(text, language):
"""Converts text to IPA using phonemizer with espeak backend."""
if not isinstance(text, str) or not text.strip():
print(f"Warning: Invalid input text for IPA conversion: {text}")
return "" # Return empty string for invalid input
try:
# Ensure phonemizer is installed: pip install phonemizer
# Ensure espeak-ng is installed: sudo apt-get install espeak-ng (or equivalent)
ipa_text = phonemize(
text,
language=language,
backend='espeak',
strip=False, # Keep punctuation
preserve_punctuation=True,
with_stress=True,
language_switch='remove-flags', # Use this instead of regex removal
njobs=1 # Set njobs=1 for potentially better stability/simpler debugging
)
# Specific removals (might be redundant with remove-flags, but kept for consistency)
ipa_text = re.sub(r'tʃˈaɪniːzlˈe̞tə', '', ipa_text)
ipa_text = re.sub(r'tʃˈaɪniːzɭˈetə', '', ipa_text)
ipa_text = re.sub(r'dʒˈapəniːzlˈe̞tə', '', ipa_text)
ipa_text = re.sub(r'dʒˈapəniːzɭˈetə', '', ipa_text)
ipa_text = ipa_text.strip()
# Replace multiple spaces with single space
ipa_text = re.sub(r'\s+', ' ', ipa_text)
print(f"Text: '{text}' | Lang: {language} | IPA: '{ipa_text}'")
return ipa_text
except ImportError:
print("Error: 'phonemizer' library not found. Please install it: pip install phonemizer")
raise
except Exception as e:
# Check if it's an espeak error (often happens if language is unsupported)
if "espeak" in str(e).lower():
print(f"Error: Espeak backend failed for language '{language}'. Is the language code valid and espeak-ng installed/supporting it?")
print(f" Original error: {e}")
else:
print(f"Error phonemizing text: '{text}' with language '{language}'. Error: {e}")
# Decide how to handle error
raise ValueError(f"Phonemization failed for '{text}' ({language})") from e
# --- End of functions from app.py ---
# --- Argument Parser Setup ---
# (Parser definition remains the same as previous refactored version)
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for F5/E2 TTS.",
)
parser.add_argument(
"-c", "--config", type=str, default="inference-cli.toml",
help="Path to configuration file (TOML format). Default: inference-cli.toml"
)
# --- Arguments overriding config or providing inputs ---
parser.add_argument( "--ckpt_path", type=str, default=None, help="Path or Hub ID (hf://...) to the TTS model checkpoint (.pt/.safetensors). Overrides config.")
parser.add_argument( "--ref_audio", type=str, default=None, help="Path to the reference audio file (<10s recommended). Overrides config.")
parser.add_argument( "--ref_text", type=str, default=None, help="Reference text. If omitted, Whisper transcription is used. Overrides config.")
parser.add_argument( "--gen_text", type=str, default=None, help="Text to synthesize. Overrides config.")
parser.add_argument( "--gen_file", type=str, default=None, help="File containing text to synthesize (overrides --gen_text and config).")
parser.add_argument( "--output_dir", type=str, default=None, help="Directory to save output audio and spectrogram. Overrides config.")
parser.add_argument( "--output_name", type=str, default="out", help="Base name for output files (e.g., 'my_speech' -> my_speech.wav, my_speech.png). Default: out.")
# --- Parameter Arguments ---
parser.add_argument( "--ref_language", type=str, default=None, help="Language code for reference text phonemization (e.g., 'en-us', 'pl', 'de'). Overrides config.")
parser.add_argument( "--language", type=str, default=None, help="Language code for generated text phonemization (e.g., 'en-us', 'pl', 'de'). Overrides config.")
parser.add_argument( "--speed", type=float, default=None, help="Speech speed multiplier. Overrides config.")
parser.add_argument( "--nfe", type=int, default=None, help="Number of function evaluations (sampling steps). Overrides config.")
parser.add_argument( "--cfg", type=float, default=None, help="Classifier-Free Guidance strength. Overrides config.")
parser.add_argument( "--sway", type=float, default=None, help="Sway sampling coefficient. Overrides config.")
parser.add_argument( "--cross_fade", type=float, default=None, help="Cross-fade duration between batches (seconds). Overrides config.")
parser.add_argument( "--remove_silence", action=argparse.BooleanOptionalAction, default=None, help="Enable/disable final silence removal. Overrides config.")
parser.add_argument( "--hf_token", type=str, default=None, help="Hugging Face API token (for downloading private models/checkpoints).")
parser.add_argument( "--tokenizer_path", type=str, default=None, help="Path to the tokenizer.json file. Overrides config.")
parser.add_argument( "--device", type=str, default=None, help="Device to use ('cuda', 'cpu', 'mps'). Auto-detects if not set.")
parser.add_argument( "--dtype", type=str, default=None, help="Data type ('float16', 'bfloat16', 'float32'). Auto-selects if not set.")
args = parser.parse_args()
# --- Load Configuration ---
config = {}
if Path(args.config).exists():
try:
with open(args.config, "rb") as f:
config = tomli.load(f)
print(f"Loaded configuration from {args.config}")
except Exception as e:
print(f"Warning: Could not load config file {args.config}. Error: {e}")
else:
print(f"Warning: Config file {args.config} not found. Using defaults and CLI args.")
# --- Determine Parameters (CLI > Config > Defaults) ---
# (Parameter determination remains the same)
ckpt_path = args.ckpt_path or config.get("ckpt_path", "hf://Gregniuki/F5-tts_English_German_Polish/multi3/model_900000.pt")
ref_audio_path = args.ref_audio or config.get("ref_audio")
ref_text = args.ref_text if args.ref_text is not None else config.get("ref_text", "")
gen_text = args.gen_text or config.get("gen_text")
gen_file = args.gen_file or config.get("gen_file")
output_dir = Path(args.output_dir or config.get("output_dir", "."))
output_name = args.output_name or config.get("output_name", "out")
ref_language = args.ref_language or config.get("ref_language", "en-us")
language = args.language or config.get("language", "en-us")
speed = args.speed if args.speed is not None else config.get("speed", 1.0)
nfe_step = args.nfe if args.nfe is not None else config.get("nfe", 32)
cfg_strength = args.cfg if args.cfg is not None else config.get("cfg", 2.0)
sway_sampling_coef = args.sway if args.sway is not None else config.get("sway", -1.0)
cross_fade_duration = args.cross_fade if args.cross_fade is not None else config.get("cross_fade", 0.15)
remove_silence_flag = args.remove_silence if args.remove_silence is not None else config.get("remove_silence", False)
hf_token = args.hf_token or config.get("hf_token")
tokenizer_path = args.tokenizer_path or config.get("tokenizer_path", "data/Emilia_ZH_EN_pinyin/tokenizer.json")
# --- Validate Required Arguments ---
if not ckpt_path: raise ValueError("Missing required argument/config: --ckpt_path")
if not ref_audio_path: raise ValueError("Missing required argument/config: --ref_audio")
if not gen_text and not gen_file: raise ValueError("Missing required argument/config: --gen_text or --gen_file")
# --- Read gen_text from file if provided ---
if gen_file:
try:
with codecs.open(gen_file, "r", "utf-8") as f: gen_text = f.read()
print(f"Loaded generation text from {gen_file}")
except Exception as e: raise ValueError(f"Error reading generation text file {gen_file}: {e}")
# --- Setup Device and Dtype ---
# (Device/Dtype setup remains the same)
cli_device = args.device or config.get("device")
if cli_device:
device = torch.device(cli_device)
else:
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
cli_dtype = args.dtype or config.get("dtype")
if cli_dtype:
dtype_map = {"float16": torch.float16, "bfloat16": torch.bfloat16, "float32": torch.float32}
if cli_dtype in dtype_map: dtype = dtype_map[cli_dtype]
else: raise ValueError(f"Unsupported dtype: {cli_dtype}")
else:
if device.type == "cuda": dtype = torch.float16
elif device.type == "cpu" and hasattr(torch.backends, 'cpu') and torch.backends.cpu.supports_bfloat16: dtype = torch.bfloat16
else: dtype = torch.float32
print(f"Using device: {device}, dtype: {dtype}")
# --- Hugging Face Login ---
if hf_token:
print("Logging in to Hugging Face Hub...")
try:
login(token=hf_token)
print("Logged in successfully.")
except Exception as e:
print(f"Warning: Hugging Face login failed: {e}")
# --- Create Output Directory ---
output_dir.mkdir(parents=True, exist_ok=True)
wave_path = output_dir / f"{output_name}.wav"
spectrogram_path = output_dir / f"{output_name}.png"
# --- Load Models and Tokenizer ---
print("Loading Tokenizer...")
try:
if not Path(tokenizer_path).exists():
raise FileNotFoundError(f"Tokenizer file not found: {tokenizer_path}")
tokenizer = Tokenizer.from_file(tokenizer_path)
vocab_size = tokenizer.get_vocab_size()
print(f"Tokenizer loaded successfully. Vocab size: {vocab_size}")
except Exception as e:
raise ValueError(f"Error loading tokenizer from {tokenizer_path}: {e}")
print("Loading Vocoder...")
# Pass device to load_vocoder
vocos = load_vocoder(device=device) # Already includes .to(device).eval()
print("Loading ASR Model (Whisper)...")
try:
whisper_dtype = torch.float16 if device.type == 'cuda' else torch.float32
# Reduce default batch_size for Whisper CLI use
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=whisper_dtype,
device=device,
model_kwargs={"attn_implementation": "sdpa"} # Use SDPA if available
)
print("Whisper model loaded.")
except Exception as e:
print(f"Warning: Could not load Whisper ASR model: {e}. Transcription will not be available.")
pipe = None
print("Loading TTS Model...")
# --- Determine Model Class and Config ---
# Example configs (ensure they match your actual model requirements)
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) # Add mel_dim/text_num_embeds if needed by class
# Heuristic to determine model class (improve if needed)
if "E2TTS" in ckpt_path or "UNetT" in ckpt_path:
model_cls = UNetT
model_cfg = E2TTS_model_cfg
print(f"Assuming E2-TTS (UNetT) architecture for {ckpt_path}.")
elif "F5TTS" in ckpt_path or "DiT" in ckpt_path:
model_cls = DiT
model_cfg = F5TTS_model_cfg
print(f"Assuming F5-TTS (DiT) architecture for {ckpt_path}.")
else:
# Default or raise error if model type cannot be inferred
print(f"Warning: Cannot infer model type from '{ckpt_path}'. Defaulting to DiT/F5TTS.")
model_cls = DiT
model_cfg = F5TTS_model_cfg
try:
# Pass vocab_size needed by load_custom
ema_model = load_custom(model_cls, model_cfg, ckpt_path, vocab_size=vocab_size, device=device, use_ema=True)
# Ensure model is using the target runtime dtype
ema_model = ema_model.to(dtype=dtype)
print(f"TTS Model loaded successfully ({model_cls.__name__}).")
except Exception as e:
print(f"Critical Error: Failed to load TTS model from {ckpt_path}: {e}")
raise
# --- Settings from app.py ---
target_sample_rate = 24000
n_mel_channels = model_cfg.get('mel_dim', 100) # Use mel_dim from config if available
hop_length = 256
target_rms = 0.1
# --- Main Inference Logic ---
def infer_batch(ref_audio_tuple, ref_text_ipa, gen_text_ipa_batches,
ema_model, vocos, tokenizer,
remove_silence_post, cross_fade_duration,
nfe_step, cfg_strength, sway_sampling_coef, speed,
target_sample_rate, hop_length, target_rms, device, dtype):
"""
Generates audio batches based on reference and text inputs.
(Function body remains the same as previous refactored version)
"""
audio, sr = ref_audio_tuple
audio = audio.to(device, dtype=dtype)
# Preprocess reference audio (resample, RMS norm)
if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True)
current_rms = torch.sqrt(torch.mean(torch.square(audio)))
rms_applied_factor = 1.0 # Track scaling factor applied to ref
if current_rms < target_rms and current_rms > 1e-5: # Add safety check for near-silent audio
print(f"Reference audio RMS ({current_rms:.3f}) below target ({target_rms}). Normalizing.")
rms_applied_factor = target_rms / current_rms
audio = audio * rms_applied_factor
elif current_rms <= 1e-5:
print("Warning: Reference audio is near silent. Skipping RMS normalization.")
else:
print(f"Reference audio RMS ({current_rms:.3f}) >= target ({target_rms}). No normalization.")
if sr != target_sample_rate:
print(f"Resampling reference audio from {sr} Hz to {target_sample_rate} Hz.")
resampler = torchaudio.transforms.Resample(sr, target_sample_rate).to(device)
audio = resampler(audio)
ref_audio_len_frames = audio.shape[-1] // hop_length
print(f"Reference audio length: {audio.shape[-1]/target_sample_rate:.2f}s ({ref_audio_len_frames} frames)")
generated_waves = []
spectrograms = []
progress_bar = tqdm(gen_text_ipa_batches, desc="Generating Batches")
for i, gen_text_ipa in enumerate(progress_bar):
progress_bar.set_postfix({"Batch": f"{i+1}/{len(gen_text_ipa_batches)}"})
# Combine reference and generated IPA text
combined_ipa_text = ref_text_ipa + " " + gen_text_ipa
# print(f"Batch {i+1} Combined IPA: {combined_ipa_text}") # Debug
# Tokenize
try:
# Tokenizer expects single string or list of strings
encoding = tokenizer.encode(combined_ipa_text)
tokens = encoding.ids
token_str = encoding.tokens # For logging/debug
# --- Model Input Formatting ---
# Check how your specific model's `sample` method expects the 'text' input.
# Option 1 (like app.py): String of space-separated tokens
# token_input_string = ' '.join(map(str, token_str))
# final_text_list = [token_input_string]
# Option 2: List of token IDs (might be more common)
# final_text_list = [tokens] # List containing the list/tensor of IDs
# Option 3: Tensor of token IDs (check model docs)
# Assuming model expects Option 1 based on app.py:
token_input_string = ' '.join(map(str, token_str))
final_text_list = [token_input_string]
# print(f"Batch {i+1} Input Text List for Model: {final_text_list}")
except Exception as e:
print(f"Error tokenizing batch {i+1}: '{combined_ipa_text}'. Error: {e}")
continue
# Calculate duration
ref_ipa_len = len(ref_text_ipa)
gen_ipa_len = len(gen_text_ipa)
if ref_ipa_len == 0: ref_ipa_len = 1 # Avoid division by zero
duration_frames = ref_audio_len_frames + int(((ref_audio_len_frames / ref_ipa_len) * gen_ipa_len) / speed)
min_duration_frames = max(10, target_sample_rate // hop_length // 4) # Shorter min duration (e.g. 0.25s)
duration_frames = max(min_duration_frames, duration_frames)
max_duration_frames = 40 * target_sample_rate // hop_length # Increase max duration slightly?
if duration_frames > max_duration_frames:
print(f"Warning: Calculated duration {duration_frames} frames exceeds max {max_duration_frames}. Capping.")
duration_frames = max_duration_frames
# print(f"Batch {i+1}: Duration={duration_frames} frames")
# Inference
try:
with torch.inference_mode():
cond_audio = audio.to(ema_model.device, dtype=dtype) # Match model device/dtype
# print(f"Model device: {ema_model.device}, Cond audio device: {cond_audio.device}, dtype: {cond_audio.dtype}")
generated_mel, _ = ema_model.sample(
cond=cond_audio,
text=final_text_list, # Pass formatted text input
duration=duration_frames,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
# Process generated mel
generated_mel = generated_mel.to(device, dtype=dtype) # Back to main device/dtype
generated_mel = generated_mel[:, ref_audio_len_frames:, :]
generated_mel_spec = rearrange(generated_mel, "1 n d -> 1 d n")
# Vocoding
# Vocos usually expects float32
vocos_input_mel = generated_mel_spec.to(vocos.device, dtype=torch.float32)
generated_wave = vocos.decode(vocos_input_mel)
generated_wave = generated_wave.to(device, dtype=torch.float32)
# Adjust RMS (Scale generated audio by the same factor applied to reference)
generated_wave = generated_wave * rms_applied_factor
# Convert to numpy
generated_wave_np = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave_np)
spectrograms.append(generated_mel_spec[0].cpu().to(torch.float32).numpy())
except Exception as e:
logging.exception(f"Error during inference/processing for batch {i+1}:") # Log traceback
print(f"Error details: {e}")
continue
if not generated_waves:
print("No audio waves were generated.")
return None, None
# Combine batches
print(f"Combining {len(generated_waves)} generated batches...")
if cross_fade_duration <= 0 or len(generated_waves) == 1:
final_wave = np.concatenate(generated_waves)
else:
# (Cross-fading logic remains the same)
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave; next_wave = generated_waves[i]
cf_samples = min(int(cross_fade_duration * target_sample_rate), len(prev_wave), len(next_wave))
if cf_samples <= 0: final_wave = np.concatenate([prev_wave, next_wave]); continue
p_olap = prev_wave[-cf_samples:]; n_olap = next_wave[:cf_samples]
f_out = np.linspace(1, 0, cf_samples, dtype=p_olap.dtype); f_in = np.linspace(0, 1, cf_samples, dtype=n_olap.dtype)
cf_olap = p_olap * f_out + n_olap * f_in
final_wave = np.concatenate([prev_wave[:-cf_samples], cf_olap, next_wave[cf_samples:]])
print(f"Applied cross-fade of {cross_fade_duration:.2f}s between batches.")
# Optional: Remove silence post-combination
if remove_silence_post:
print("Removing silence from final output...")
try:
final_wave_float32 = final_wave.astype(np.float32)
with tempfile.NamedTemporaryFile(delete=True, suffix=".wav") as tmp_wav:
sf.write(tmp_wav.name, final_wave_float32, target_sample_rate)
aseg = AudioSegment.from_file(tmp_wav.name)
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500
)
if not non_silent_segs:
print("Warning: Silence removal resulted in empty audio. Keeping original.")
else:
non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
non_silent_wave.export(tmp_wav.name, format="wav")
final_wave_tensor, _ = torchaudio.load(tmp_wav.name)
final_wave = final_wave_tensor.squeeze().cpu().numpy()
print("Silence removal applied.")
except Exception as e:
print(f"Warning: Failed to remove silence: {e}. Using original.")
# Combine spectrograms
print("Combining spectrograms...")
try:
if spectrograms:
combined_spectrogram = np.concatenate(spectrograms, axis=1)
else:
combined_spectrogram = None
except ValueError as e:
print(f"Warning: Could not concatenate spectrograms: {e}. Skipping.")
combined_spectrogram = None
return final_wave, combined_spectrogram
def main_infer(ref_audio_orig_path, ref_text_input, gen_text_full,
ema_model, vocos, tokenizer, pipe_asr, # Loaded models/utils
ref_language, language, # Languages
speed, nfe_step, cfg_strength, sway_sampling_coef, # Sampling params
remove_silence_flag, cross_fade_duration, # Postprocessing
target_sample_rate, hop_length, target_rms, # Audio params
device, dtype): # System params
"""
Main inference function coordinating preprocessing, batching, and generation.
(Function body remains the same as previous refactored version)
"""
print(f"Starting inference for text: '{gen_text_full[:100]}...'")
# --- Reference Audio Preprocessing ---
print("Processing reference audio...")
processed_ref_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_ref_wav:
processed_ref_path = temp_ref_wav.name # Store path for potential use
aseg = AudioSegment.from_file(ref_audio_orig_path)
print(f"Original ref duration: {len(aseg)/1000:.2f}s")
# Edge silence removal + padding
aseg = remove_silence_edges(aseg)
aseg += AudioSegment.silent(duration=150)
# Split/recombine on silence
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=700, silence_thresh=-50, keep_silence=700
)
if non_silent_segs:
aseg = sum(non_silent_segs, AudioSegment.silent(duration=0)) # Use sum for conciseness
else:
print("Warning: Silence splitting/recombining resulted in empty audio. Using edge-trimmed.")
# Clip to 10s
max_ref_duration_ms = 10000
if len(aseg) > max_ref_duration_ms:
print(f"Reference audio exceeds {max_ref_duration_ms/1000}s. Clipping...")
aseg = aseg[:max_ref_duration_ms]
aseg.export(processed_ref_path, format="wav")
print(f"Processed ref duration: {len(aseg)/1000:.2f}s. Saved to temp file: {processed_ref_path}")
# Load processed audio tensor
ref_audio_tensor, sr_ref = torchaudio.load(processed_ref_path)
except Exception as e:
print(f"Error processing reference audio {ref_audio_orig_path}: {e}")
if processed_ref_path and Path(processed_ref_path).exists():
Path(processed_ref_path).unlink() # Clean up temp file on error
raise
# --- Reference Text Handling ---
ref_text_processed = ""
if not ref_text_input or ref_text_input.strip() == "":
print("No reference text provided. Transcribing reference audio...")
if pipe_asr is None:
raise ValueError("Whisper ASR model not loaded. Cannot transcribe. Please provide --ref_text.")
if not processed_ref_path:
raise ValueError("Processed reference audio path is missing for transcription.")
try:
# Ensure Whisper input dtype matches its loaded dtype
whisper_input_dtype = pipe_asr.model.dtype
# Load audio specifically for Whisper if dtypes differ significantly
# Or rely on pipeline handling. Assuming pipeline handles it for now.
print(f"Transcribing: {processed_ref_path}")
transcription_result = pipe_asr(
processed_ref_path,
chunk_length_s=15,
batch_size=8, # Smaller batch size for CLI
generate_kwargs={"task": "transcribe", "language": None}, # Whisper language detection
return_timestamps=False,
)
ref_text_processed = transcription_result["text"].strip()
print(f"Transcription finished: '{ref_text_processed}'")
if not ref_text_processed:
print("Warning: Transcription resulted in empty text. Using placeholder.")
ref_text_processed = "Reference audio"
except Exception as e:
logging.exception("Error during transcription:")
raise ValueError("Transcription failed. Please provide --ref_text.")
else:
print("Using provided reference text.")
ref_text_processed = ref_text_input
# Clean up the temporary processed reference audio file
if processed_ref_path and Path(processed_ref_path).exists():
try:
Path(processed_ref_path).unlink()
# print(f"Cleaned up temp ref file: {processed_ref_path}") # Debug
except OSError as e:
print(f"Warning: Could not delete temp ref file {processed_ref_path}: {e}")
# Ensure reference text ends with ". "
if not ref_text_processed.endswith(". "):
ref_text_processed = ref_text_processed.rstrip('. ') + ". " # More robust way
print(f"Final Reference Text: '{ref_text_processed}'")
# --- Phonemize Reference Text ---
print(f"Phonemizing reference text with language: {ref_language}")
ref_text_ipa = text_to_ipa(ref_text_processed, language=ref_language)
if not ref_text_ipa: raise ValueError("Reference text phonemization failed.")
# --- Chunk and Phonemize Generation Text ---
ref_audio_duration_sec = ref_audio_tensor.shape[-1] / sr_ref if sr_ref > 0 else 1.0
if ref_audio_duration_sec <= 0: ref_audio_duration_sec = 1.0
chars_per_sec = len(ref_text_processed.encode('utf-8')) / ref_audio_duration_sec if ref_audio_duration_sec > 0 else 10.0
if chars_per_sec <= 0: chars_per_sec = 10.0
target_chunk_duration_sec = max(5.0, 20.0 - ref_audio_duration_sec)
max_chars = int(chars_per_sec * target_chunk_duration_sec)
print(f"Ref duration: {ref_audio_duration_sec:.2f}s => Calculated max_chars/batch: {max_chars}")
gen_text_batches_plain = chunk_text(gen_text_full, max_chars=max_chars)
if not gen_text_batches_plain: raise ValueError("Text chunking resulted in zero batches.")
print(f"Split generation text into {len(gen_text_batches_plain)} batches.")
print(f"Phonemizing generation text batches with language: {language}")
gen_text_ipa_batches = []
for i, batch_text in enumerate(gen_text_batches_plain):
# print(f" Phonemizing batch {i+1}/{len(gen_text_batches_plain)}...") # Verbose
batch_ipa = text_to_ipa(batch_text, language=language)
if batch_ipa: gen_text_ipa_batches.append(batch_ipa)
else: print(f"Warning: Skipping batch {i+1} due to phonemization failure.")
if not gen_text_ipa_batches: raise ValueError("Phonemization failed for all generation text batches.")
# --- Run Batched Inference ---
print(f"Starting batch inference process ({len(gen_text_ipa_batches)} batches)...")
final_wave, combined_spectrogram = infer_batch(
(ref_audio_tensor, sr_ref), ref_text_ipa, gen_text_ipa_batches,
ema_model, vocos, tokenizer,
remove_silence_flag, cross_fade_duration,
nfe_step, cfg_strength, sway_sampling_coef, speed,
target_sample_rate, hop_length, target_rms,
device, dtype
)
return final_wave, combined_spectrogram
# --- Execution ---
if __name__ == "__main__":
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
try:
final_wave_np, combined_spectrogram_np = main_infer(
ref_audio_path, ref_text, gen_text,
ema_model, vocos, tokenizer, pipe,
ref_language, language,
speed, nfe_step, cfg_strength, sway_sampling_coef,
remove_silence_flag, cross_fade_duration,
target_sample_rate, hop_length, target_rms,
device, dtype
)
# --- Save Outputs ---
output_saved = False
if final_wave_np is not None and len(final_wave_np) > 0:
print(f"Saving final audio ({len(final_wave_np)/target_sample_rate:.2f}s) to {wave_path}...")
final_wave_float32 = final_wave_np.astype(np.float32) # Ensure float32 for sf
sf.write(str(wave_path), final_wave_float32, target_sample_rate)
print("Audio saved successfully.")
output_saved = True
else:
print("Inference did not produce a valid audio wave.")
if combined_spectrogram_np is not None:
print(f"Saving combined spectrogram to {spectrogram_path}...")
save_spectrogram(combined_spectrogram_np, str(spectrogram_path))
print("Spectrogram saved successfully.")
output_saved = True
# else: # No need to print if spectrogram was None
# print("Spectrogram generation failed or was skipped.")
if not output_saved:
print("No output files were generated.")
except FileNotFoundError as e:
logging.error(f"File not found: {e}")
print(f"\nError: A required file was not found. Please check paths. Details: {e}")
exit(1)
except ValueError as e:
logging.error(f"Value error: {e}")
print(f"\nError: An invalid value or configuration was encountered. Details: {e}")
exit(1)
except Exception as e:
logging.exception("An unexpected error occurred during inference:") # Log traceback
print(f"\nAn unexpected error occurred: {e}")
exit(1)
print("\nInference completed.")