Spaces:
Running
Running
File size: 8,261 Bytes
46a21b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
from dotenv import load_dotenv
import time
import streamlit as st
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
load_dotenv()
groq_api_key= os.getenv("GROQ_API_KEY")
p1 = os.getenv("pmpt1")
p2 = os.getenv("pmpt2")
p3 = os.getenv("pmpt3")
p4 = os.getenv("pmpt4")
p5 = os.getenv("pmpt5")
p6 = os.getenv("pmpt6")
p7 = os.getenv("pmpt7")
p8 = os.getenv("pmpt8")
p9 = os.getenv("pmpt9")
p10 = os.getenv("pmpt10")
p11 = os.getenv("pmpt11")
p12 = os.getenv("pmpt12")
p13 = os.getenv("pmpt13")
p14 = os.getenv("pmpt14")
p15 = os.getenv("pmpt15")
p16 = os.getenv("pmpt16")
p17 = os.getenv("pmpt17")
p18 = os.getenv("pmpt18")
p19 = os.getenv("pmpt19")
p20 = os.getenv("pmpt20")
p21 = os.getenv("pmpt21")
p22 = os.getenv("pmpt22")
p23 = os.getenv("pmpt23")
p24 = os.getenv("pmpt24")
p25 = os.getenv("pmpt25")
prompt1 = ChatPromptTemplate.from_messages([("system",p1),("user", "Question:{query1}")])
prompt2 = ChatPromptTemplate.from_messages([("system",p2),("user", "Question:{query1}")])
prompt3 = ChatPromptTemplate.from_messages([("system",p3),("user", "Question:{query1}")])
prompt4 = ChatPromptTemplate.from_messages([("system",p4),("user", "Question:{query1}")])
prompt5 = ChatPromptTemplate.from_messages([("system",p5),("user", "Question:{query1}")])
prompt6 = ChatPromptTemplate.from_messages([("system",p6), ("user", "Question:{query1}")])
prompt7 = ChatPromptTemplate.from_messages([("system",p7), ("user", "Question:{query1}")])
prompt8 = ChatPromptTemplate.from_messages([("system",p8), ("user", "Question:{query1}")])
prompt9 = ChatPromptTemplate.from_messages([("system",p9), ("user", "Question:{query1}")])
prompt10 = ChatPromptTemplate.from_messages([("system", p10), ("user", "Question:{query1}")])
prompt11 = ChatPromptTemplate.from_messages([("system", p11), ("user", "Question:{query1}")])
prompt12 = ChatPromptTemplate.from_messages([("system", p12), ("user", "Question:{query1}")])
prompt13 = ChatPromptTemplate.from_messages([("system", p13), ("user", "Question:{query1}")])
prompt14 = ChatPromptTemplate.from_messages([("system", p14), ("user", "Question:{query1}")])
prompt15 = ChatPromptTemplate.from_messages([("system", p15), ("user", "Question:{query1}")])
prompt16 = ChatPromptTemplate.from_messages([("system", p16), ("user", "Question:{query1}")])
prompt17 = ChatPromptTemplate.from_messages([("system", p17), ("user", "Question:{query1}")])
prompt18 = ChatPromptTemplate.from_messages([("system", p18), ("user", "Question:{query1}")])
prompt19 = ChatPromptTemplate.from_messages([("system", p19), ("user", "Question:{query1}")])
prompt20 = ChatPromptTemplate.from_messages([("system", p20), ("user", "Question:{query1}")])
prompt21 = ChatPromptTemplate.from_messages([("system", p21), ("user", "Question:{query1}")])
prompt22 = ChatPromptTemplate.from_messages([("system", p22), ("user", "Question:{query1}")])
prompt23 = ChatPromptTemplate.from_messages([("system", p23), ("user", "Question:{query1}")])
prompt24 = ChatPromptTemplate.from_messages([("system", p24), ("user", "Question:{query1}")])
prompt25 = ChatPromptTemplate.from_messages([("system", p25), ("user", "Question:{query1}")])
llm1 = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key)
output_parser = StrOutputParser()
chain1 = prompt1| llm1| output_parser
chain2 = prompt2| llm1| output_parser
chain3 = prompt3| llm1| output_parser
chain4 = prompt4| llm1| output_parser
chain5 = prompt5| llm1| output_parser
chain6 = prompt6| llm1| output_parser
chain7 = prompt7| llm1| output_parser
chain8 = prompt8| llm1| output_parser
chain9 = prompt9| llm1| output_parser
chain10 = prompt10| llm1| output_parser
chain11 = prompt11| llm1| output_parser
chain12 = prompt12| llm1| output_parser
chain13 = prompt13| llm1| output_parser
chain14 = prompt14| llm1| output_parser
chain15 = prompt15| llm1| output_parser
chain16 = prompt16| llm1| output_parser
chain17 = prompt17| llm1| output_parser
chain18 = prompt18| llm1| output_parser
chain19 = prompt19| llm1| output_parser
chain20 = prompt20| llm1| output_parser
chain21 = prompt21| llm1| output_parser
chain22 = prompt22| llm1| output_parser
chain23 = prompt23| llm1| output_parser
chain24 = prompt24| llm1| output_parser
chain25 = prompt25| llm1| output_parser
def generate_ai_content(thinking_type, usr_ip):
if thinking_type == "Analytical Thinking": return chain1.invoke({"query1": usr_ip})
elif headline == "Creative Thinking":return chain2.invoke({"query1": usr_ip})
elif headline == "Critical Thinking": return chain3.invoke({"query1": usr_ip})
elif headline == "Logical Thinking": return chain4.invoke({"query1": usr_ip})
elif headline == "Lateral Thinking": return chain5.invoke({"query1": usr_ip})
elif headline == "Divergent Thinking": return chain6.invoke({"query1": usr_ip})
elif headline == "Convergent Thinking": return chain7.invoke({"query1": usr_ip})
elif headline == "Empathetic Thinking": return chain8.invoke({"query1": usr_ip})
elif headline == "Systems Thinking": return chain9.invoke({"query1": usr_ip})
elif headline == "Intuitive Thinking": return chain10.invoke({"query1": usr_ip})
elif headline == "Strategic Thinking": return chain11.invoke({"query1": usr_ip})
elif headline == "Collaborative Thinking": return chain12.invoke({"query1": usr_ip})
elif headline == "Reverse Thinking": return chain13.invoke({"query1": usr_ip})
elif headline == "Practical Thinking": return chain14.invoke({"query1": usr_ip})
elif headline == "Mind Mapping": return chain15.invoke({"query1": usr_ip})
elif headline == "Trial-and-Error Thinking": return chain16.invoke({"query1": usr_ip})
elif headline == "Root Cause Analysis": return chain17.invoke({"query1": usr_ip})
elif headline == "Optimistic Thinking": return chain18.invoke({"query1": usr_ip})
elif headline == "Pessimistic Thinking": return chain19.invoke({"query1": usr_ip})
elif headline == "Abstract Thinking": return chain20.invoke({"query1": usr_ip})
elif headline == "Habitual Thinking": return chain21.invoke({"query1": usr_ip})
elif headline == "Scenario Thinking": return chain22.invoke({"query1": usr_ip})
elif headline == "Mathematical Thinking": return chain23.invoke({"query1": usr_ip})
elif headline == "Ethical Thinking": return chain24.invoke({"query1": usr_ip})
elif headline == "Design Thinking": return chain25.invoke({"query1": usr_ip})
st.title("Think AI")
st.text("Think AI is designed to explore all the posible ways to approch a problem to find the perfect solution.")
st.write("### Ask anything")
col1, col2 = st.columns([4, 1])
with col1:
user_input = st.text_area("Enter your text:", key="input_text", height=68)
with col2:
submit = st.button("Submit")
if submit and user_input.strip():
counter = 0
st.write("---")
st.write("### Generated Content")
headlines = ["Analytical Thinking", "Creative Thinking", "Critical Thinking","Logical Thinking",
"Lateral Thinking","Divergent Thinking", "Convergent Thinking", "Empathetic Thinking",
"Systems Thinking", "Intuitive Thinking","Strategic Thinking", "Collaborative Thinking",
"Reverse Thinking", "Practical Thinking", "Mind Mapping","Trial-and-Error Thinking",
"Root Cause Analysis", "Optimistic Thinking", "Pessimistic Thinking", "Abstract Thinking",
"Habitual Thinking", "Scenario Thinking", "Mathematical Thinking", "Ethical Thinking",
"Design Thinking",
]
for headline in headlines:
if counter >=5:
time.sleep(3)
counter =0
st.write(f"#### {headline}")
ai_content = generate_ai_content(headline, user_input)
st.markdown(ai_content,unsafe_allow_html=True)
# st.text_area(f" ", value=ai,key=headline)
counter+=1
st.markdown(
"""
<hr style="border: none; border-top: 3px double #000; margin-top: 20px; margin-bottom: 20px;">
""",
unsafe_allow_html=True
)
# End the box container
st.markdown('</div>', unsafe_allow_html=True) |