File size: 4,164 Bytes
c8763bd
43ee890
c8763bd
5af8a7d
134a499
ab5f5f1
eed3175
 
 
 
 
 
ab5f5f1
eed3175
6f3a090
 
0f1bf97
ab5f5f1
 
 
 
0f1bf97
 
c8763bd
efc3d5b
7406034
ab5f5f1
b3a1bf0
4564527
 
 
43ee890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6232d80
 
 
 
 
 
66ed621
 
6232d80
66ed621
 
 
6232d80
8c0b755
3f5d9da
 
 
 
 
 
 
 
 
6232d80
3f5d9da
 
 
 
 
964afcc
3f5d9da
43ee890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5d9da
43ee890
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from apscheduler.schedulers.background import BackgroundScheduler
import gradio as gr
import pandas as pd

from src.control_panel import create_control_panel, create_control_callback
from src.leaderboard import (
    create_leaderboard_table,
     COLS,
    TYPES,
)

from src.llm_perf import get_llm_perf_df

from src.content import (
    LOGO,
    TITLE,
    ABOUT,
    INTRODUCTION,
    EXAMPLE_CONFIG,
    CITATION_BUTTON,
    CITATION_BUTTON_LABEL,
)


MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB-275W 🖥️", "audace": "RTX4090-24GB-450W 💻"}
HF_TOKEN = os.environ.get("HF_TOKEN", None)

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)

import unicodedata

def is_valid_unicode(char):
    try:
        unicodedata.name(char)
        return True  # Valid Unicode character
    except ValueError:
        return False  # Invalid Unicode character

def remove_invalid_unicode(input_string):
    if isinstance(input_string, str):
        valid_chars = [char for char in input_string if is_valid_unicode(char)]
        return ''.join(valid_chars)
    else:
        return input_string  # Return non-string values as is

def preprocess_dataframe(df):
    # Apply the `remove_invalid_unicode` function to all string columns
    for column in df.columns:
        if df[column].dtype == 'object':  # Checking for string columns
            df[column] = df[column].apply(remove_invalid_unicode)
    return df

# Fetch and preprocess the leaderboard DataFrame
llm_perf_df = get_llm_perf_df()
llm_perf_df = preprocess_dataframe(llm_perf_df)

# Create the leaderboard table
leaderboard_table = create_leaderboard_table(llm_perf_df)

hidden_leaderboard_table_for_search = gr.components.Dataframe(
    leaderboard_table,
    headers=COLS,
    datatype=TYPES,
    visible=False,
    line_breaks=False,
    interactive=False
)

def display(x, y):
    # Assuming df is your DataFrame
    for column in leaderboard_table.columns:
        if leaderboard_table[column].dtype == 'object':
            leaderboard_table[column] = leaderboard_table[column].apply(remove_invalid_unicode)

    subset_df = leaderboard_table[COLS]
    return subset_df

dummy1 = gr.Textbox(visible=False)

INTRODUCTION_TEXT = """
This is a copied space from LLM Trustworthy Leaderboard. Instead of displaying
the results as table this space was modified to simply provides a gradio API interface. 
Using the following python script below, users can access the full leaderboard data easily.
Python on how to access the data:
```python
# Import dependencies
from gradio_client import Client
# Initialize the Gradio client with the API URL
client = Client("https://rodrigomasini-data-only-llm-perf-leaderboard.hf.space/")
try:
    # Perform the API call
    response = client.predict("","", api_name='/predict')
    # Check if response it's directly accessible
    if len(response) > 0:
        print("Response received!")
        headers = response.get('headers', [])
        data = response.get('data', [])
        print(headers)
        # Remove commenst if you want to download the dataset and save in csv format
        # Specify the path to your CSV file
        #csv_file_path = 'llm-perf-benchmark.csv'
        # Open the CSV file for writing
        #with open(csv_file_path, mode='w', newline='', encoding='utf-8') as file:
        #    writer = csv.writer(file)
            # Write the headers
        #    writer.writerow(headers)
            # Write the data
        #    for row in data:
        #        writer.writerow(row)
        #print(f"Results saved to {csv_file_path}")
    # If the above line prints a string that looks like JSON, you can parse it with json.loads(response)
    # Otherwise, you might need to adjust based on the actual structure of `response`
except Exception as e:
    print(f"An error occurred: {e}")
```
"""

interface = gr.Interface(
    fn=display,
    inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1],
    outputs=[hidden_leaderboard_table_for_search]
)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

interface.launch()