|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
import onnxruntime |
|
from typing import Optional, Tuple |
|
|
|
from ..utils.transforms import ResizeLongestSide |
|
|
|
|
|
class SamPredictorONNX: |
|
mask_threshold: float = 0.0 |
|
image_format: str = "RGB" |
|
img_size = 1024 |
|
pixel_mean = np.array([123.675, 116.28, 103.53])[None, :, None, None] |
|
pixel_std = np.array([58.395, 57.12, 57.375])[None, :, None, None] |
|
|
|
def __init__( |
|
self, |
|
encoder_path: str, |
|
decoder_path: str |
|
) -> None: |
|
super().__init__() |
|
self.encoder = onnxruntime.InferenceSession(encoder_path) |
|
self.decoder = onnxruntime.InferenceSession(decoder_path) |
|
|
|
|
|
if 'CUDAExecutionProvider' in onnxruntime.get_available_providers(): |
|
self.encoder.set_providers(['CUDAExecutionProvider']) |
|
self.decoder.set_providers(['CUDAExecutionProvider']) |
|
|
|
self.transform = ResizeLongestSide(self.img_size) |
|
self.reset_image() |
|
|
|
def set_image( |
|
self, |
|
image: np.ndarray, |
|
image_format: str = "RGB", |
|
) -> None: |
|
assert image_format in [ |
|
"RGB", |
|
"BGR", |
|
], f"image_format must be in ['RGB', 'BGR'], is {image_format}." |
|
if image_format != self.image_format: |
|
image = image[..., ::-1] |
|
|
|
|
|
input_image = self.transform.apply_image(image) |
|
input_image = input_image.transpose(2, 0, 1)[None, :, :, :] |
|
self.reset_image() |
|
original_size = image.shape[:2] |
|
input_size = tuple(input_image.shape[-2:]) |
|
input_image = self.preprocess(input_image).astype(np.float32) |
|
outputs = self.encoder.run(None, {'image': input_image}) |
|
features = outputs[0] |
|
|
|
return features, input_size, original_size |
|
|
|
def predict( |
|
self, |
|
features: np.ndarray, |
|
input_size: Tuple[int, int], |
|
original_size: Tuple[int, int], |
|
point_coords: Optional[np.ndarray] = None, |
|
point_labels: Optional[np.ndarray] = None, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
point_coords = self.transform.apply_coords(point_coords, original_size) |
|
outputs = self.decoder.run(None, { |
|
'image_embeddings': features, |
|
'point_coords': point_coords.astype(np.float32), |
|
'point_labels': point_labels.astype(np.float32) |
|
}) |
|
scores, low_res_masks = outputs[0], outputs[1] |
|
masks = self.postprocess_masks(low_res_masks, input_size, original_size) |
|
masks = masks > self.mask_threshold |
|
|
|
return masks, scores, low_res_masks |
|
|
|
def reset_image(self) -> None: |
|
"""Resets the currently set image.""" |
|
self.is_image_set = False |
|
self.features = None |
|
self.orig_h = None |
|
self.orig_w = None |
|
self.input_h = None |
|
self.input_w = None |
|
|
|
def preprocess(self, x: np.ndarray): |
|
x = (x - self.pixel_mean) / self.pixel_std |
|
h, w = x.shape[-2:] |
|
padh = self.img_size - h |
|
padw = self.img_size - w |
|
x = np.pad(x, ((0, 0), (0, 0), (0, padh), (0, padw)), mode='constant', constant_values=0) |
|
return x |
|
|
|
def postprocess_masks(self, mask: np.ndarray, input_size: Tuple[int, int], original_size: Tuple[int, int]) -> np.ndarray: |
|
mask = mask.squeeze(0).transpose(1, 2, 0) |
|
mask = cv2.resize(mask, (self.img_size, self.img_size), interpolation=cv2.INTER_LINEAR) |
|
mask = mask[:input_size[0], :input_size[1], :] |
|
mask = cv2.resize(mask, (original_size[1], original_size[0]), interpolation=cv2.INTER_LINEAR) |
|
mask = mask.transpose(2, 0, 1)[None, :, :, :] |
|
return mask |
|
|