Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,31 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForCausalLM
|
3 |
-
|
4 |
-
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
|
5 |
from deepseek_vl.utils.io import load_pil_images
|
6 |
|
7 |
-
|
8 |
-
# specify the path to the model
|
9 |
model_path = "deepseek-ai/deepseek-vl-7b-chat"
|
|
|
|
|
10 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
11 |
tokenizer = vl_chat_processor.tokenizer
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
conversation = [
|
17 |
{
|
18 |
"role": "User",
|
@@ -25,28 +38,33 @@ conversation = [
|
|
25 |
}
|
26 |
]
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
+
from deepseek_vl.models import VLChatProcessor
|
|
|
4 |
from deepseek_vl.utils.io import load_pil_images
|
5 |
|
6 |
+
# 模型路徑
|
|
|
7 |
model_path = "deepseek-ai/deepseek-vl-7b-chat"
|
8 |
+
|
9 |
+
# 讀取 processor
|
10 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
11 |
tokenizer = vl_chat_processor.tokenizer
|
12 |
|
13 |
+
# ==== 量化模型設定 ====
|
14 |
+
bnb_config = BitsAndBytesConfig(
|
15 |
+
load_in_4bit=True, # 4-bit 量化
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
bnb_4bit_use_double_quant=True
|
18 |
+
)
|
19 |
+
|
20 |
+
vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_path,
|
22 |
+
trust_remote_code=True,
|
23 |
+
device_map="auto",
|
24 |
+
quantization_config=bnb_config
|
25 |
+
)
|
26 |
+
vl_gpt.eval()
|
27 |
|
28 |
+
# 範例對話
|
29 |
conversation = [
|
30 |
{
|
31 |
"role": "User",
|
|
|
38 |
}
|
39 |
]
|
40 |
|
41 |
+
# ==== 逐張圖片處理,降低 VRAM 使用 ====
|
42 |
+
answers = []
|
43 |
+
for conv in conversation:
|
44 |
+
pil_images = load_pil_images([conv])
|
45 |
+
prepare_inputs = vl_chat_processor(
|
46 |
+
conversations=[conv],
|
47 |
+
images=pil_images,
|
48 |
+
force_batchify=True
|
49 |
+
).to(vl_gpt.device)
|
50 |
+
|
51 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
52 |
+
|
53 |
+
# 減少生成長度 max_new_tokens
|
54 |
+
outputs = vl_gpt.language_model.generate(
|
55 |
+
inputs_embeds=inputs_embeds,
|
56 |
+
attention_mask=prepare_inputs.attention_mask,
|
57 |
+
pad_token_id=tokenizer.eos_token_id,
|
58 |
+
bos_token_id=tokenizer.bos_token_id,
|
59 |
+
eos_token_id=tokenizer.eos_token_id,
|
60 |
+
max_new_tokens=128, # 原本 512 → 128
|
61 |
+
do_sample=False,
|
62 |
+
use_cache=True
|
63 |
+
)
|
64 |
+
|
65 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
66 |
+
answers.append(f"{prepare_inputs['sft_format'][0]} {answer}")
|
67 |
|
68 |
+
# 輸出結果
|
69 |
+
for ans in answers:
|
70 |
+
print(ans)
|