robot0820 commited on
Commit
3153182
·
verified ·
1 Parent(s): a675f47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -9
app.py CHANGED
@@ -1,8 +1,7 @@
1
  import torch
2
  import gradio as gr
3
- from transformers import AutoModelForCausalLM
4
  from deepseek_vl.models import VLChatProcessor
5
- from deepseek_vl.utils.io import load_pil_images
6
 
7
  # 模型路徑
8
  model_path = "deepseek-ai/deepseek-vl-7b-chat"
@@ -11,45 +10,55 @@ model_path = "deepseek-ai/deepseek-vl-7b-chat"
11
  vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
12
  tokenizer = vl_chat_processor.tokenizer
13
 
14
- # ==== 載入模型 (CPU/GPU 兼容,不使用量化) ====
 
 
 
 
 
 
15
  vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
16
  model_path,
17
  trust_remote_code=True,
18
- device_map="auto", # 自動分配 GPU / CPU
19
- torch_dtype=torch.bfloat16 # 低精度減少 VRAM
20
  )
21
  vl_gpt.eval()
22
 
23
  # ==== 單張圖片處理 + 減少 max_new_tokens ====
24
  def generate_answer(image, text):
25
  try:
 
26
  conversation = [
27
  {"role": "User", "content": "<image_placeholder>" + text, "images": [image]},
28
  {"role": "Assistant", "content": ""}
29
  ]
30
 
31
- pil_images = load_pil_images(conversation)
32
  prepare_inputs = vl_chat_processor(
33
  conversations=conversation,
34
- images=pil_images,
35
  force_batchify=True
36
  ).to(vl_gpt.device)
37
 
 
38
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
39
 
 
40
  outputs = vl_gpt.language_model.generate(
41
  inputs_embeds=inputs_embeds,
42
  attention_mask=prepare_inputs.attention_mask,
43
  pad_token_id=tokenizer.eos_token_id,
44
  bos_token_id=tokenizer.bos_token_id,
45
  eos_token_id=tokenizer.eos_token_id,
46
- max_new_tokens=128, # 降低生成長度
47
  do_sample=False,
48
  use_cache=True
49
  )
50
 
51
  answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
52
  return f"{prepare_inputs['sft_format'][0]} {answer}"
 
53
  except Exception as e:
54
  return f"Error: {str(e)}"
55
 
@@ -59,7 +68,7 @@ demo = gr.Interface(
59
  inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Question")],
60
  outputs="text",
61
  title="DeepSeek-VL-7B Chat Demo",
62
- description="上傳圖片並輸入問題,模型會生成與圖片相關的回答(CPU/GPU 兼容,低記憶體模式)"
63
  )
64
 
65
  if __name__ == "__main__":
 
1
  import torch
2
  import gradio as gr
3
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig
4
  from deepseek_vl.models import VLChatProcessor
 
5
 
6
  # 模型路徑
7
  model_path = "deepseek-ai/deepseek-vl-7b-chat"
 
10
  vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
11
  tokenizer = vl_chat_processor.tokenizer
12
 
13
+ # ==== 量化模型設定 (4-bit) ====
14
+ bnb_config = BitsAndBytesConfig(
15
+ load_in_4bit=True,
16
+ bnb_4bit_compute_dtype=torch.float16,
17
+ bnb_4bit_use_double_quant=True
18
+ )
19
+
20
  vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
21
  model_path,
22
  trust_remote_code=True,
23
+ device_map="auto",
24
+ quantization_config=bnb_config
25
  )
26
  vl_gpt.eval()
27
 
28
  # ==== 單張圖片處理 + 減少 max_new_tokens ====
29
  def generate_answer(image, text):
30
  try:
31
+ # 將圖片與文字組合成對話格式
32
  conversation = [
33
  {"role": "User", "content": "<image_placeholder>" + text, "images": [image]},
34
  {"role": "Assistant", "content": ""}
35
  ]
36
 
37
+ # 🚨 這裡直接傳入 [image],因為已經是 PIL.Image,不需要 load_pil_images
38
  prepare_inputs = vl_chat_processor(
39
  conversations=conversation,
40
+ images=[image],
41
  force_batchify=True
42
  ).to(vl_gpt.device)
43
 
44
+ # 轉換成 embeddings
45
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
46
 
47
+ # 產生回答
48
  outputs = vl_gpt.language_model.generate(
49
  inputs_embeds=inputs_embeds,
50
  attention_mask=prepare_inputs.attention_mask,
51
  pad_token_id=tokenizer.eos_token_id,
52
  bos_token_id=tokenizer.bos_token_id,
53
  eos_token_id=tokenizer.eos_token_id,
54
+ max_new_tokens=128, # 降低生成長度以減少記憶體
55
  do_sample=False,
56
  use_cache=True
57
  )
58
 
59
  answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
60
  return f"{prepare_inputs['sft_format'][0]} {answer}"
61
+
62
  except Exception as e:
63
  return f"Error: {str(e)}"
64
 
 
68
  inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Question")],
69
  outputs="text",
70
  title="DeepSeek-VL-7B Chat Demo",
71
+ description="上傳圖片並輸入問題,模型會生成與圖片相關的回答(4-bit 量化,低記憶體模式)"
72
  )
73
 
74
  if __name__ == "__main__":