Update app.py
Browse files
app.py
CHANGED
@@ -28,19 +28,23 @@ vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
|
28 |
# ==== 單張圖片推理函式 ====
|
29 |
def chat_with_image(image, user_message):
|
30 |
try:
|
|
|
31 |
conversation = [
|
32 |
{"role": "User", "content": "<image_placeholder>" + user_message, "images": [image]},
|
33 |
{"role": "Assistant", "content": ""}
|
34 |
]
|
35 |
|
36 |
-
# 直接傳入 PIL.Image
|
37 |
prepare_inputs = vl_chat_processor(
|
38 |
conversations=conversation,
|
39 |
images=[image],
|
40 |
force_batchify=True
|
41 |
).to(vl_gpt.device)
|
42 |
|
43 |
-
#
|
|
|
|
|
|
|
44 |
new_inputs = {}
|
45 |
for k, v in prepare_inputs.items():
|
46 |
if torch.is_tensor(v):
|
@@ -62,11 +66,12 @@ def chat_with_image(image, user_message):
|
|
62 |
pad_token_id=tokenizer.eos_token_id,
|
63 |
bos_token_id=tokenizer.bos_token_id,
|
64 |
eos_token_id=tokenizer.eos_token_id,
|
65 |
-
max_new_tokens=128,
|
66 |
do_sample=False,
|
67 |
use_cache=True
|
68 |
)
|
69 |
|
|
|
70 |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
71 |
return answer
|
72 |
|
|
|
28 |
# ==== 單張圖片推理函式 ====
|
29 |
def chat_with_image(image, user_message):
|
30 |
try:
|
31 |
+
# 建立對話
|
32 |
conversation = [
|
33 |
{"role": "User", "content": "<image_placeholder>" + user_message, "images": [image]},
|
34 |
{"role": "Assistant", "content": ""}
|
35 |
]
|
36 |
|
37 |
+
# 直接傳入 PIL.Image,不使用 load_pil_images
|
38 |
prepare_inputs = vl_chat_processor(
|
39 |
conversations=conversation,
|
40 |
images=[image],
|
41 |
force_batchify=True
|
42 |
).to(vl_gpt.device)
|
43 |
|
44 |
+
# 🚨 將 BatchedVLChatProcessorOutput 轉 dict
|
45 |
+
prepare_inputs = {k: getattr(prepare_inputs, k) for k in prepare_inputs.__dataclass_fields__.keys()}
|
46 |
+
|
47 |
+
# 正確 dtype:input_ids/labels 保持 long,其他 tensor 轉 float16
|
48 |
new_inputs = {}
|
49 |
for k, v in prepare_inputs.items():
|
50 |
if torch.is_tensor(v):
|
|
|
66 |
pad_token_id=tokenizer.eos_token_id,
|
67 |
bos_token_id=tokenizer.bos_token_id,
|
68 |
eos_token_id=tokenizer.eos_token_id,
|
69 |
+
max_new_tokens=128, # 減少記憶體
|
70 |
do_sample=False,
|
71 |
use_cache=True
|
72 |
)
|
73 |
|
74 |
+
# 解碼
|
75 |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
76 |
return answer
|
77 |
|