import gradio as gr import pandas as pd import numpy as np import re import pickle from transformers import AutoTokenizer, TFAutoModelForSequenceClassification from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import inflect # Load the tokenizer, label encoder, and model def load_resources(): tokenizer = AutoTokenizer.from_pretrained('./transformer_tokenizer') with open('./label_encoder_tf.pickle', 'rb') as handle: encoder = pickle.load(handle) model = TFAutoModelForSequenceClassification.from_pretrained('./transformer_model') return tokenizer, encoder, model tokenizer, encoder, model = load_resources() # Preprocessing functions def expand_contractions(text, contractions_dict): contractions_pattern = re.compile('({})'.format('|'.join(contractions_dict.keys())), flags=re.IGNORECASE | re.DOTALL) def expand_match(contraction): match = contraction.group(0) first_char = match[0] expanded_contraction = contractions_dict.get(match.lower(), match) return first_char + expanded_contraction[1:] expanded_text = contractions_pattern.sub(expand_match, text) return re.sub("'", "", expanded_text) def convert_numbers_to_words(text): p = inflect.engine() words = text.split() return ' '.join([p.number_to_words(word) if word.isdigit() else word for word in words]) def preprocess_text(text): contractions_dict = { "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he had", "he'd've": "he would have", "he'll": "he will", "he'll've": "he will have", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I had", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have", "I'm": "I am", "I've": "I have", "isn't": "is not", "it'd": "it had", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she had", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have", "so's": "so is", "that'd": "that had", "that'd've": "that would have", "that's": "that is", "there'd": "there had", "there'd've": "there would have", "there's": "there is", "they'd": "they had", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we had", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are", "y'all've": "you all have", "you'd": "you had", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have" } text = text.lower() text = expand_contractions(text, contractions_dict) text = convert_numbers_to_words(text) text = re.sub(r'[^\w\s]', '', text) stop_words = set(stopwords.words('english')) text = ' '.join([word for word in text.split() if word not in stop_words]) lemmatizer = WordNetLemmatizer() text = ' '.join([lemmatizer.lemmatize(word) for word in text.split()]) return text # Define the prediction function def predict_spam(text): preprocessed_text = preprocess_text(text) encoding = tokenizer(preprocessed_text, return_tensors='tf', truncation=True, padding=True) prediction = model(encoding).logits predicted_label = np.argmax(prediction, axis=1) decoded_label = encoder.inverse_transform(predicted_label) return decoded_label[0] # Create the Gradio interface iface = gr.Interface(fn=predict_spam, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter SMS message here..."), outputs="text", title="SMS Spam Classification with Transformer Model", description="Enter an SMS message to classify it as spam or ham.") # Launch the interface iface.launch()