Spaces:
Sleeping
Sleeping
Update core/fact_checker.py
Browse files- core/fact_checker.py +82 -38
core/fact_checker.py
CHANGED
@@ -1,87 +1,131 @@
|
|
1 |
-
|
2 |
import re
|
3 |
-
from typing import Dict,
|
4 |
|
5 |
def clean_ocr_artifacts(text: str) -> str:
|
6 |
text = re.sub(r'\s{2,}', ' ', text)
|
7 |
-
text = re.sub(r'(?<=[
|
8 |
text = re.sub(r'\b[Aa]love\b', 'aloe', text)
|
9 |
text = re.sub(r'\bRelevanci\b', 'Relevance', text)
|
10 |
text = re.sub(r'\bAlove\b', 'Aloe', text)
|
11 |
text = re.sub(r'\b[aA]dvice\b', 'advice', text)
|
12 |
return text.strip()
|
13 |
|
|
|
14 |
class MedicalFactChecker:
|
|
|
|
|
15 |
def __init__(self):
|
|
|
16 |
self.contraindications = self._load_contraindications()
|
17 |
self.dosage_patterns = self._compile_dosage_patterns()
|
18 |
-
self.definitive_patterns = [
|
19 |
-
r
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def _load_contraindications(self) -> Dict[str, List[str]]:
|
|
|
27 |
return {
|
28 |
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
|
29 |
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
|
30 |
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
|
31 |
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
|
32 |
}
|
33 |
-
|
34 |
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
|
|
35 |
patterns = [
|
36 |
-
r'\d+\s*mg\b',
|
37 |
-
r'\d+\s*g\b',
|
38 |
-
r'\d+\s*ml\b',
|
39 |
-
r'\d+\s*tablets?\b',
|
40 |
-
r'\d+\s*times?\s+(?:per\s+)?day\b',
|
41 |
-
r'every\s+\d+\s+hours?\b'
|
42 |
]
|
43 |
-
return [re.compile(
|
44 |
-
|
45 |
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
46 |
issues = []
|
47 |
warnings = []
|
48 |
accuracy_score = 0.0
|
49 |
-
|
|
|
50 |
response_lower = response.lower()
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
issues.append(f"Contraindication: {med} with {item}")
|
57 |
accuracy_score -= 0.3
|
58 |
break
|
59 |
-
|
|
|
60 |
if context:
|
61 |
resp_words = set(response_lower.split())
|
62 |
ctx_words = set(context.lower().split())
|
63 |
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
|
64 |
-
if context_similarity < 0.5:
|
65 |
-
warnings.append(f"Low context
|
66 |
accuracy_score -= 0.1
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
for pattern in self.definitive_patterns:
|
69 |
if pattern.search(response):
|
70 |
-
issues.append("
|
71 |
accuracy_score -= 0.4
|
72 |
break
|
73 |
-
|
|
|
74 |
for pattern in self.dosage_patterns:
|
75 |
if pattern.search(response):
|
76 |
-
warnings.append("Dosage detected
|
77 |
accuracy_score -= 0.1
|
78 |
break
|
79 |
-
|
80 |
-
|
|
|
81 |
return {
|
82 |
-
"confidence_score":
|
83 |
"issues": issues,
|
84 |
"warnings": warnings,
|
85 |
-
"context_similarity": context_similarity
|
86 |
-
"is_safe": len(issues) == 0 and
|
87 |
}
|
|
|
|
|
1 |
import re
|
2 |
+
from typing import Dict, Any, List
|
3 |
|
4 |
def clean_ocr_artifacts(text: str) -> str:
|
5 |
text = re.sub(r'\s{2,}', ' ', text)
|
6 |
+
text = re.sub(r'(?<=[\.\?!]\s)([eEoO])([A-Z][a-z]+)', r'\2', text) # eFlood → Flood, oSeek → Seek
|
7 |
text = re.sub(r'\b[Aa]love\b', 'aloe', text)
|
8 |
text = re.sub(r'\bRelevanci\b', 'Relevance', text)
|
9 |
text = re.sub(r'\bAlove\b', 'Aloe', text)
|
10 |
text = re.sub(r'\b[aA]dvice\b', 'advice', text)
|
11 |
return text.strip()
|
12 |
|
13 |
+
|
14 |
class MedicalFactChecker:
|
15 |
+
"""Enhanced medical fact checker with faster validation"""
|
16 |
+
|
17 |
def __init__(self):
|
18 |
+
self.medical_facts = self._load_medical_facts()
|
19 |
self.contraindications = self._load_contraindications()
|
20 |
self.dosage_patterns = self._compile_dosage_patterns()
|
21 |
+
self.definitive_patterns = [
|
22 |
+
re.compile(r, re.IGNORECASE) for r in [
|
23 |
+
r'always\s+(?:use|take|apply)',
|
24 |
+
r'never\s+(?:use|take|apply)',
|
25 |
+
r'will\s+(?:cure|heal|fix)',
|
26 |
+
r'guaranteed\s+to',
|
27 |
+
r'completely\s+(?:safe|effective)'
|
28 |
+
]
|
29 |
+
]
|
30 |
|
31 |
+
|
32 |
+
def _load_medical_facts(self) -> Dict[str, Any]:
|
33 |
+
"""Pre-loaded medical facts for Gaza context"""
|
34 |
+
return {
|
35 |
+
"burn_treatment": {
|
36 |
+
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
|
37 |
+
"no_ice": "Never apply ice directly to burns",
|
38 |
+
"clean_cloth": "Cover with clean, dry cloth if available"
|
39 |
+
},
|
40 |
+
"wound_care": {
|
41 |
+
"pressure": "Apply direct pressure to control bleeding",
|
42 |
+
"elevation": "Elevate injured limb if possible",
|
43 |
+
"clean_hands": "Clean hands before treating wounds when possible"
|
44 |
+
},
|
45 |
+
"infection_signs": {
|
46 |
+
"redness": "Increasing redness around wound",
|
47 |
+
"warmth": "Increased warmth at wound site",
|
48 |
+
"pus": "Yellow or green discharge",
|
49 |
+
"fever": "Fever may indicate systemic infection"
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
def _load_contraindications(self) -> Dict[str, List[str]]:
|
54 |
+
"""Pre-loaded contraindications for common treatments"""
|
55 |
return {
|
56 |
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
|
57 |
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
|
58 |
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
|
59 |
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
|
60 |
}
|
61 |
+
|
62 |
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
63 |
+
"""Pre-compiled dosage patterns"""
|
64 |
patterns = [
|
65 |
+
r'\d+\s*mg\b', # milligrams
|
66 |
+
r'\d+\s*g\b', # grams
|
67 |
+
r'\d+\s*ml\b', # milliliters
|
68 |
+
r'\d+\s*tablets?\b', # tablets
|
69 |
+
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
|
70 |
+
r'every\s+\d+\s+hours?\b' # intervals
|
71 |
]
|
72 |
+
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
|
73 |
+
|
74 |
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
75 |
+
"""Enhanced medical accuracy check with Gaza-specific considerations"""
|
76 |
+
if response is None:
|
77 |
+
response = ""
|
78 |
issues = []
|
79 |
warnings = []
|
80 |
accuracy_score = 0.0
|
81 |
+
|
82 |
+
# Check for contraindications (faster keyword matching)
|
83 |
response_lower = response.lower()
|
84 |
+
for medication, contra_list in self.contraindications.items():
|
85 |
+
if medication in response_lower:
|
86 |
+
for contra in contra_list:
|
87 |
+
if any(word in response_lower for word in contra.split()):
|
88 |
+
issues.append(f"Potential contraindication: {medication} with {contra}")
|
|
|
89 |
accuracy_score -= 0.3
|
90 |
break
|
91 |
+
|
92 |
+
# Context alignment using Jaccard similarity
|
93 |
if context:
|
94 |
resp_words = set(response_lower.split())
|
95 |
ctx_words = set(context.lower().split())
|
96 |
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
|
97 |
+
if context_similarity < 0.5: # Lowered threshold for Gaza context
|
98 |
+
warnings.append(f"Low context similarity: {context_similarity:.2f}")
|
99 |
accuracy_score -= 0.1
|
100 |
+
else:
|
101 |
+
context_similarity = 0.0
|
102 |
+
|
103 |
+
# Gaza-specific resource checks
|
104 |
+
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
|
105 |
+
if any(resource in response_lower for resource in gaza_resources):
|
106 |
+
warnings.append("Consider resource limitations in Gaza context")
|
107 |
+
accuracy_score -= 0.05
|
108 |
+
|
109 |
+
# Unsupported claims check
|
110 |
for pattern in self.definitive_patterns:
|
111 |
if pattern.search(response):
|
112 |
+
issues.append(f"Unsupported definitive claim detected")
|
113 |
accuracy_score -= 0.4
|
114 |
break
|
115 |
+
|
116 |
+
# Dosage validation
|
117 |
for pattern in self.dosage_patterns:
|
118 |
if pattern.search(response):
|
119 |
+
warnings.append("Dosage detected - verify with professional")
|
120 |
accuracy_score -= 0.1
|
121 |
break
|
122 |
+
|
123 |
+
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
|
124 |
+
|
125 |
return {
|
126 |
+
"confidence_score": confidence_score,
|
127 |
"issues": issues,
|
128 |
"warnings": warnings,
|
129 |
+
"context_similarity": context_similarity,
|
130 |
+
"is_safe": len(issues) == 0 and confidence_score > 0.5
|
131 |
}
|