Spaces:
Running
Running
Update finetune_flan_t5.py
Browse files- finetune_flan_t5.py +25 -22
finetune_flan_t5.py
CHANGED
@@ -1,35 +1,34 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from transformers import (
|
3 |
-
|
4 |
-
|
5 |
TrainingArguments,
|
6 |
-
DataCollatorForSeq2Seq
|
7 |
-
FlaxAutoModelForSeq2SeqLM # Added for explicit model loading
|
8 |
)
|
9 |
from trl import SFTTrainer
|
10 |
import torch
|
11 |
|
12 |
-
|
|
|
|
|
13 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
}
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
model_name = "google/flan-t5-base"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
-
|
24 |
-
# METHOD 1: Load model directly without AutoModel
|
25 |
-
from transformers import T5ForConditionalGeneration
|
26 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
27 |
|
28 |
-
#
|
29 |
-
# pip install transformers[ja]
|
30 |
-
# Then use AutoModel as before
|
31 |
-
|
32 |
-
# 3. Training arguments
|
33 |
training_args = TrainingArguments(
|
34 |
output_dir="./flan-t5-medical-finetuned",
|
35 |
per_device_train_batch_size=4,
|
@@ -41,22 +40,26 @@ training_args = TrainingArguments(
|
|
41 |
evaluation_strategy="no",
|
42 |
fp16=torch.cuda.is_available(),
|
43 |
report_to="none",
|
44 |
-
remove_unused_columns=False
|
|
|
|
|
|
|
45 |
)
|
46 |
|
47 |
-
#
|
48 |
trainer = SFTTrainer(
|
49 |
model=model,
|
50 |
tokenizer=tokenizer,
|
51 |
train_dataset=dataset,
|
52 |
args=training_args,
|
53 |
dataset_text_field="text",
|
|
|
54 |
data_collator=DataCollatorForSeq2Seq(
|
55 |
tokenizer,
|
56 |
model=model,
|
57 |
-
padding=
|
58 |
)
|
59 |
)
|
60 |
|
61 |
-
#
|
62 |
trainer.train()
|
|
|
1 |
from datasets import load_dataset
|
2 |
from transformers import (
|
3 |
+
T5ForConditionalGeneration, # Using specific model class
|
4 |
+
AutoTokenizer,
|
5 |
TrainingArguments,
|
6 |
+
DataCollatorForSeq2Seq
|
|
|
7 |
)
|
8 |
from trl import SFTTrainer
|
9 |
import torch
|
10 |
|
11 |
+
|
12 |
+
|
13 |
+
# 2. Load and prepare dataset
|
14 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
15 |
|
16 |
+
# Create properly formatted text field
|
17 |
+
def format_example(example):
|
18 |
+
return {
|
19 |
+
"text": f"Instruction: {example['input']}\nResponse: {example['output']}",
|
20 |
+
"input": example["input"],
|
21 |
+
"output": example["output"]
|
22 |
+
}
|
23 |
+
|
24 |
+
dataset = dataset.map(format_example)
|
25 |
|
26 |
+
# 3. Load model and tokenizer
|
27 |
model_name = "google/flan-t5-base"
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
29 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
30 |
|
31 |
+
# 4. Configure training
|
|
|
|
|
|
|
|
|
32 |
training_args = TrainingArguments(
|
33 |
output_dir="./flan-t5-medical-finetuned",
|
34 |
per_device_train_batch_size=4,
|
|
|
40 |
evaluation_strategy="no",
|
41 |
fp16=torch.cuda.is_available(),
|
42 |
report_to="none",
|
43 |
+
remove_unused_columns=False,
|
44 |
+
# Add these to prevent version conflicts
|
45 |
+
dataloader_pin_memory=False,
|
46 |
+
dataloader_num_workers=0
|
47 |
)
|
48 |
|
49 |
+
# 5. Initialize trainer with proper config
|
50 |
trainer = SFTTrainer(
|
51 |
model=model,
|
52 |
tokenizer=tokenizer,
|
53 |
train_dataset=dataset,
|
54 |
args=training_args,
|
55 |
dataset_text_field="text",
|
56 |
+
max_seq_length=512, # Explicitly set to avoid warning
|
57 |
data_collator=DataCollatorForSeq2Seq(
|
58 |
tokenizer,
|
59 |
model=model,
|
60 |
+
padding="longest"
|
61 |
)
|
62 |
)
|
63 |
|
64 |
+
# 6. Start training
|
65 |
trainer.train()
|