Spaces:
Sleeping
Sleeping
Update finetune_flan_t5.py
Browse files- finetune_flan_t5.py +29 -50
finetune_flan_t5.py
CHANGED
@@ -1,75 +1,54 @@
|
|
1 |
from datasets import load_dataset
|
2 |
-
from transformers import
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
-
# Load
|
8 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
9 |
|
10 |
-
# Load
|
11 |
model_name = "google/flan-t5-base"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
|
15 |
-
#
|
16 |
-
def
|
17 |
-
|
18 |
-
target_text = example["output"]
|
19 |
-
|
20 |
-
model_inputs = tokenizer(
|
21 |
-
input_text,
|
22 |
-
max_length=512,
|
23 |
-
truncation=True,
|
24 |
-
padding="max_length"
|
25 |
-
)
|
26 |
-
|
27 |
-
labels = tokenizer(
|
28 |
-
target_text,
|
29 |
-
max_length=128,
|
30 |
-
truncation=True,
|
31 |
-
padding="max_length"
|
32 |
-
)["input_ids"]
|
33 |
-
|
34 |
-
model_inputs["labels"] = labels
|
35 |
-
return model_inputs
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
#
|
40 |
-
tokenized_dataset = dataset.map(preprocess)
|
41 |
-
|
42 |
-
|
43 |
-
# Define training arguments
|
44 |
training_args = TrainingArguments(
|
45 |
-
output_dir="./flan-t5-medical",
|
46 |
per_device_train_batch_size=4,
|
47 |
gradient_accumulation_steps=2,
|
48 |
num_train_epochs=3,
|
|
|
49 |
logging_dir="./logs",
|
50 |
save_strategy="epoch",
|
51 |
evaluation_strategy="no",
|
52 |
-
fp16=torch.cuda.is_available()
|
|
|
53 |
)
|
54 |
|
55 |
-
#
|
56 |
-
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
57 |
-
|
58 |
-
def formatting_func(example):
|
59 |
-
return [f"Input: {example['input']}\nOutput: {example['output']}"]
|
60 |
-
|
61 |
-
from trl import SFTTrainer
|
62 |
-
from transformers import DataCollatorForSeq2Seq
|
63 |
-
|
64 |
trainer = SFTTrainer(
|
65 |
model=model,
|
66 |
tokenizer=tokenizer,
|
67 |
-
train_dataset=
|
68 |
args=training_args,
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
-
# Start training
|
75 |
-
trainer.train()
|
|
|
1 |
from datasets import load_dataset
|
2 |
+
from transformers import (
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoModelForSeq2SeqLM,
|
5 |
+
TrainingArguments,
|
6 |
+
DataCollatorForSeq2Seq
|
7 |
+
)
|
8 |
+
from trl import SFTTrainer
|
9 |
import torch
|
10 |
|
11 |
+
# 1. Load dataset
|
12 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
13 |
|
14 |
+
# 2. Load model and tokenizer
|
15 |
model_name = "google/flan-t5-base"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
|
19 |
+
# 3. Formatting function for SFTTrainer
|
20 |
+
def format_instruction(example):
|
21 |
+
return f"### Instruction:\n{example['input']}\n\n### Response:\n{example['output']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# 4. Training arguments
|
|
|
|
|
|
|
|
|
24 |
training_args = TrainingArguments(
|
25 |
+
output_dir="./flan-t5-medical-finetuned",
|
26 |
per_device_train_batch_size=4,
|
27 |
gradient_accumulation_steps=2,
|
28 |
num_train_epochs=3,
|
29 |
+
learning_rate=5e-5,
|
30 |
logging_dir="./logs",
|
31 |
save_strategy="epoch",
|
32 |
evaluation_strategy="no",
|
33 |
+
fp16=torch.cuda.is_available(),
|
34 |
+
report_to="none"
|
35 |
)
|
36 |
|
37 |
+
# 5. Initialize SFTTrainer correctly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
trainer = SFTTrainer(
|
39 |
model=model,
|
40 |
tokenizer=tokenizer,
|
41 |
+
train_dataset=dataset,
|
42 |
args=training_args,
|
43 |
+
max_seq_length=512,
|
44 |
+
formatting_func=format_instruction,
|
45 |
+
data_collator=DataCollatorForSeq2Seq(
|
46 |
+
tokenizer,
|
47 |
+
pad_to_multiple_of=8,
|
48 |
+
return_tensors="pt",
|
49 |
+
padding=True
|
50 |
+
)
|
51 |
)
|
52 |
|
53 |
+
# 6. Start training
|
54 |
+
trainer.train()
|