Spaces:
Sleeping
Sleeping
Update finetune_flan_t5.py
Browse files- finetune_flan_t5.py +14 -13
finetune_flan_t5.py
CHANGED
@@ -8,20 +8,22 @@ from transformers import (
|
|
8 |
from trl import SFTTrainer
|
9 |
import torch
|
10 |
|
11 |
-
# 1. Load dataset
|
12 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# 2. Load model and tokenizer
|
15 |
model_name = "google/flan-t5-base"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
|
19 |
-
# 3.
|
20 |
-
def format_instruction(example):
|
21 |
-
# Return a single formatted string
|
22 |
-
return f"### Instruction:\n{example['input']}\n\n### Response:\n{example['output']}"
|
23 |
-
|
24 |
-
# 4. Training arguments
|
25 |
training_args = TrainingArguments(
|
26 |
output_dir="./flan-t5-medical-finetuned",
|
27 |
per_device_train_batch_size=4,
|
@@ -35,23 +37,22 @@ training_args = TrainingArguments(
|
|
35 |
report_to="none"
|
36 |
)
|
37 |
|
38 |
-
#
|
39 |
trainer = SFTTrainer(
|
40 |
model=model,
|
41 |
tokenizer=tokenizer,
|
42 |
train_dataset=dataset,
|
43 |
args=training_args,
|
44 |
max_seq_length=512,
|
45 |
-
|
46 |
data_collator=DataCollatorForSeq2Seq(
|
47 |
tokenizer,
|
48 |
-
model=model,
|
49 |
pad_to_multiple_of=8,
|
50 |
return_tensors="pt",
|
51 |
padding=True
|
52 |
-
)
|
53 |
-
dataset_text_field="text" # Explicit field name
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
trainer.train()
|
|
|
8 |
from trl import SFTTrainer
|
9 |
import torch
|
10 |
|
11 |
+
# 1. Load and prepare dataset
|
12 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
13 |
|
14 |
+
# Add 'text' field containing the formatted examples
|
15 |
+
def add_text_field(example):
|
16 |
+
example['text'] = f"### Instruction:\n{example['input']}\n\n### Response:\n{example['output']}"
|
17 |
+
return example
|
18 |
+
|
19 |
+
dataset = dataset.map(add_text_field)
|
20 |
+
|
21 |
# 2. Load model and tokenizer
|
22 |
model_name = "google/flan-t5-base"
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
25 |
|
26 |
+
# 3. Training arguments
|
|
|
|
|
|
|
|
|
|
|
27 |
training_args = TrainingArguments(
|
28 |
output_dir="./flan-t5-medical-finetuned",
|
29 |
per_device_train_batch_size=4,
|
|
|
37 |
report_to="none"
|
38 |
)
|
39 |
|
40 |
+
# 4. Initialize SFTTrainer with correct configuration
|
41 |
trainer = SFTTrainer(
|
42 |
model=model,
|
43 |
tokenizer=tokenizer,
|
44 |
train_dataset=dataset,
|
45 |
args=training_args,
|
46 |
max_seq_length=512,
|
47 |
+
dataset_text_field="text", # Field we created
|
48 |
data_collator=DataCollatorForSeq2Seq(
|
49 |
tokenizer,
|
50 |
+
model=model,
|
51 |
pad_to_multiple_of=8,
|
52 |
return_tensors="pt",
|
53 |
padding=True
|
54 |
+
)
|
|
|
55 |
)
|
56 |
|
57 |
+
# 5. Start training
|
58 |
trainer.train()
|