Spaces:
Sleeping
Sleeping
File size: 16,061 Bytes
5d652f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
#!/usr/bin/env python3
"""
Comprehensive test script for Enhanced Gaza First Aid RAG Assistant
Tests all major components and validates improvements
"""
import os
import sys
import time
import logging
import traceback
from pathlib import Path
import asyncio
# Configure logging for testing
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_imports():
"""Test all required imports"""
print("π Testing imports...")
try:
import torch
print(f"β
PyTorch: {torch.__version__}")
import transformers
print(f"β
Transformers: {transformers.__version__}")
import sentence_transformers
print(f"β
Sentence Transformers: {sentence_transformers.__version__}")
import faiss
print(f"β
FAISS: {faiss.__version__}")
import gradio as gr
print(f"β
Gradio: {gr.__version__}")
from llama_index.core import Document
print("β
LlamaIndex Core")
from llama_index.vector_stores.faiss import FaissVectorStore
print("β
LlamaIndex FAISS")
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
print("β
LlamaIndex HuggingFace Embeddings")
import PyPDF2
print(f"β
PyPDF2: {PyPDF2.__version__}")
return True
except ImportError as e:
print(f"β Import error: {e}")
return False
def test_data_availability():
"""Test if medical data is available"""
print("\nπ Testing data availability...")
data_dir = Path("./data")
if not data_dir.exists():
print("β Data directory not found")
return False
pdf_files = list(data_dir.glob("*.pdf"))
txt_files = list(data_dir.glob("*.txt"))
print(f"β
Found {len(pdf_files)} PDF files")
print(f"β
Found {len(txt_files)} text files")
if len(pdf_files) == 0 and len(txt_files) == 0:
print("β No medical documents found")
return False
# Show sample files
for i, pdf_file in enumerate(pdf_files[:3]):
size_mb = pdf_file.stat().st_size / (1024 * 1024)
print(f" π {pdf_file.name} ({size_mb:.1f} MB)")
return True
def test_embedding_model():
"""Test embedding model loading and functionality"""
print("\nπ§ Testing embedding model...")
try:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Test higher-dimensional model
print("Loading all-mpnet-base-v2 (768-dim)...")
embedding_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2",
device='cpu',
embed_batch_size=2
)
# Test embedding generation
test_text = "How to treat burns with limited water supply?"
start_time = time.time()
embedding = embedding_model.get_text_embedding(test_text)
embedding_time = time.time() - start_time
print(f"β
Embedding dimension: {len(embedding)}")
print(f"β
Embedding time: {embedding_time:.2f}s")
print(f"β
Sample embedding values: {embedding[:5]}")
return True, embedding_model
except Exception as e:
print(f"β Embedding model error: {e}")
traceback.print_exc()
return False, None
def test_faiss_indexing():
"""Test FAISS indexing functionality"""
print("\nπ Testing FAISS indexing...")
try:
import faiss
import numpy as np
# Test different index types
dimension = 768
# Test flat index
flat_index = faiss.IndexFlatL2(dimension)
print(f"β
Created IndexFlatL2 (dimension: {dimension})")
# Test IVF index
nlist = 10 # Small for testing
quantizer = faiss.IndexFlatL2(dimension)
ivf_index = faiss.IndexIVFFlat(quantizer, dimension, nlist)
print(f"β
Created IndexIVFFlat (clusters: {nlist})")
# Test with sample data
sample_vectors = np.random.random((50, dimension)).astype('float32')
# Train IVF index
ivf_index.train(sample_vectors)
print("β
IVF index training completed")
# Add vectors
flat_index.add(sample_vectors)
ivf_index.add(sample_vectors)
print(f"β
Added {len(sample_vectors)} vectors to indices")
# Test search
query_vector = np.random.random((1, dimension)).astype('float32')
start_time = time.time()
flat_distances, flat_indices = flat_index.search(query_vector, 5)
flat_time = time.time() - start_time
start_time = time.time()
ivf_distances, ivf_indices = ivf_index.search(query_vector, 5)
ivf_time = time.time() - start_time
print(f"β
Flat search time: {flat_time:.4f}s")
print(f"β
IVF search time: {ivf_time:.4f}s")
print(f"β
Speed improvement: {flat_time/ivf_time:.2f}x")
return True
except Exception as e:
print(f"β FAISS indexing error: {e}")
traceback.print_exc()
return False
def test_knowledge_base():
"""Test knowledge base initialization and search"""
print("\nπ Testing knowledge base...")
try:
# Import the enhanced system
sys.path.append('.')
from enhanced_gaza_rag_app import EnhancedGazaKnowledgeBase
# Initialize knowledge base
print("Initializing knowledge base...")
kb = EnhancedGazaKnowledgeBase(data_dir="./data")
start_time = time.time()
kb.initialize()
init_time = time.time() - start_time
print(f"β
Knowledge base initialized in {init_time:.2f}s")
print(f"β
Chunks created: {len(kb.chunk_metadata)}")
# Test search functionality
test_queries = [
"How to treat burns?",
"Managing bleeding wounds",
"Signs of infection",
"Emergency care for children"
]
for query in test_queries:
start_time = time.time()
results = kb.search(query, k=3)
search_time = time.time() - start_time
print(f"β
Query: '{query}' -> {len(results)} results in {search_time:.3f}s")
if results:
best_result = results[0]
print(f" π Best match: {best_result.get('source', 'unknown')}")
print(f" π― Score: {best_result.get('score', 0):.3f}")
print(f" π₯ Priority: {best_result.get('medical_priority', 'general')}")
return True, kb
except Exception as e:
print(f"β Knowledge base error: {e}")
traceback.print_exc()
return False, None
def test_llm_loading():
"""Test LLM loading and inference"""
print("\nπ€ Testing LLM loading...")
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import torch
model_name = "microsoft/Phi-3-mini-4k-instruct"
print(f"Loading {model_name}...")
# Test quantization config
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
loading_time = time.time() - start_time
print(f"β
Model loaded in {loading_time:.2f}s")
# Test pipeline creation
generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
torch_dtype=torch.float16,
return_full_text=False
)
print("β
Generation pipeline created")
# Test inference
test_prompt = "How to treat a burn injury: "
start_time = time.time()
response = generation_pipeline(
test_prompt,
max_new_tokens=50,
temperature=0.2,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
inference_time = time.time() - start_time
if response and len(response) > 0:
generated_text = response[0]['generated_text']
print(f"β
Inference completed in {inference_time:.2f}s")
print(f"β
Generated text: {generated_text[:100]}...")
else:
print("β No response generated")
return False
return True
except Exception as e:
print(f"β LLM loading error: {e}")
traceback.print_exc()
return False
def test_full_system():
"""Test the complete enhanced system"""
print("\nπ Testing complete enhanced system...")
try:
# Import the enhanced system
from enhanced_gaza_rag_app import initialize_enhanced_system, process_medical_query_with_progress
print("Initializing complete system...")
start_time = time.time()
system = initialize_enhanced_system()
init_time = time.time() - start_time
print(f"β
Complete system initialized in {init_time:.2f}s")
# Test queries
test_queries = [
"How to treat severe burns when water is limited?",
"Managing gunshot wounds with basic supplies",
"Signs of wound infection to watch for"
]
for query in test_queries:
print(f"\nπ Testing query: '{query}'")
start_time = time.time()
response, metadata, status = process_medical_query_with_progress(query)
query_time = time.time() - start_time
print(f"β
Query processed in {query_time:.2f}s")
print(f"π Response length: {len(response)} characters")
print(f"π Metadata: {metadata}")
print(f"π‘οΈ Status: {status}")
# Check response quality
if len(response) > 50 and "error" not in response.lower():
print("β
Response quality: Good")
else:
print("β οΈ Response quality: Needs improvement")
return True
except Exception as e:
print(f"β Full system test error: {e}")
traceback.print_exc()
return False
def test_ui_components():
"""Test UI components and interface"""
print("\nπ¨ Testing UI components...")
try:
from enhanced_ui_gaza_rag_app import create_advanced_gradio_interface
print("Creating advanced Gradio interface...")
start_time = time.time()
interface = create_advanced_gradio_interface()
ui_time = time.time() - start_time
print(f"β
UI created in {ui_time:.2f}s")
print("β
Advanced CSS styling applied")
print("β
Progress indicators configured")
print("β
Gaza-specific theming applied")
print("β
Interactive elements configured")
return True
except Exception as e:
print(f"β UI components error: {e}")
traceback.print_exc()
return False
def run_performance_benchmark():
"""Run performance benchmarks"""
print("\nβ‘ Running performance benchmarks...")
try:
from enhanced_gaza_rag_app import initialize_enhanced_system
system = initialize_enhanced_system()
# Benchmark queries
benchmark_queries = [
"How to treat burns?",
"Managing bleeding wounds",
"Signs of infection",
"Emergency care procedures",
"Trauma management protocols"
]
total_time = 0
successful_queries = 0
for i, query in enumerate(benchmark_queries):
try:
start_time = time.time()
result = system.generate_response(query)
query_time = time.time() - start_time
total_time += query_time
successful_queries += 1
print(f"β
Query {i+1}: {query_time:.2f}s")
except Exception as e:
print(f"β Query {i+1} failed: {e}")
if successful_queries > 0:
avg_time = total_time / successful_queries
print(f"\nπ Performance Summary:")
print(f" Average query time: {avg_time:.2f}s")
print(f" Successful queries: {successful_queries}/{len(benchmark_queries)}")
print(f" Success rate: {successful_queries/len(benchmark_queries)*100:.1f}%")
return True
except Exception as e:
print(f"β Performance benchmark error: {e}")
traceback.print_exc()
return False
def main():
"""Run comprehensive test suite"""
print("π§ͺ Enhanced Gaza First Aid RAG Assistant - Comprehensive Test Suite")
print("=" * 70)
test_results = {}
# Run all tests
tests = [
("Import Dependencies", test_imports),
("Data Availability", test_data_availability),
("Embedding Model", lambda: test_embedding_model()[0]),
("FAISS Indexing", test_faiss_indexing),
("Knowledge Base", lambda: test_knowledge_base()[0]),
("LLM Loading", test_llm_loading),
("Full System", test_full_system),
("UI Components", test_ui_components),
("Performance Benchmark", run_performance_benchmark)
]
passed_tests = 0
total_tests = len(tests)
for test_name, test_func in tests:
print(f"\n{'='*50}")
print(f"π§ͺ Running: {test_name}")
print(f"{'='*50}")
try:
result = test_func()
test_results[test_name] = result
if result:
passed_tests += 1
print(f"β
{test_name}: PASSED")
else:
print(f"β {test_name}: FAILED")
except Exception as e:
test_results[test_name] = False
print(f"β {test_name}: ERROR - {e}")
# Final summary
print(f"\n{'='*70}")
print("π TEST SUMMARY")
print(f"{'='*70}")
for test_name, result in test_results.items():
status = "β
PASSED" if result else "β FAILED"
print(f"{test_name:.<40} {status}")
print(f"\nOverall Results: {passed_tests}/{total_tests} tests passed")
print(f"Success Rate: {passed_tests/total_tests*100:.1f}%")
if passed_tests == total_tests:
print("\nπ ALL TESTS PASSED! Enhanced system is ready for deployment.")
elif passed_tests >= total_tests * 0.8:
print("\nβ οΈ Most tests passed. System is functional with minor issues.")
else:
print("\nπ¨ Multiple test failures. System needs attention before deployment.")
return passed_tests == total_tests
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)
|