Spaces:
Running
Running
# Built-in | |
import re | |
import joblib | |
from pathlib import Path | |
import os | |
import uvicorn | |
# Dependencies for FastAPI | |
from fastapi import FastAPI | |
from fastapi.responses import RedirectResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
import keras | |
import tensorflow as tf | |
# Set Environment | |
os.environ["KERAS_BACKEND"] = "tensorflow" | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' | |
# Setup Paths | |
lr_model_path = Path('./prod_models/emotion_classifier_pipe_lr.pkl') | |
keras_model_path = Path('./prod_models/emo_modelV2_tf') | |
# Class for Text Body | |
class Paragraph(BaseModel): | |
input: str | |
# Classes | |
classes = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'] | |
# Load the Logistic Regression Model | |
with open(lr_model_path, 'rb') as f: | |
lr_model = joblib.load(f) | |
# Load the Keras Model | |
tfsmlayer = keras.layers.TFSMLayer(str(keras_model_path), call_endpoint="serving_default") | |
inputs = keras.Input(shape=(1,), dtype=tf.string) | |
outputs = tfsmlayer(inputs) | |
keras_model = keras.Model(inputs, outputs) | |
# Start the app | |
app = FastAPI() | |
# Setup CORS policy | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# APIs | |
async def docs(): | |
return RedirectResponse(url="/docs") | |
async def predict_emotions_lr(paragraph : Paragraph): | |
# Split the huge chunk of text into a list of strings | |
text_list = [text.strip() for text in re.split(r'[.!?;\n]', paragraph.input) if text.strip()] | |
# Create a list to store predictions per text | |
predictions_per_text = [] | |
for text in text_list: | |
emotion = [{'label': label, 'score': score} for label, score in zip(lr_model.classes_, lr_model.predict_proba([text])[0])] | |
predictions_per_text.append(emotion) | |
# Create a dictionary to aggregate scores for each label | |
total = {} | |
# Iterate over each list and aggregate the scores | |
for prediction in predictions_per_text: | |
for emotion_dict in prediction: | |
label = emotion_dict['label'] | |
score = emotion_dict['score'] | |
total[label] = total.get(label, 0) + score | |
# Convert the dictionary to a list of dictionaries | |
result = [{"label": label, "score": score} for label, score in total.items()] | |
# Sort the result in descending order based on score | |
sorted_result = sorted(result, key=lambda x: x['score'], reverse=True) | |
return {"predictions": sorted_result} | |
async def predict_emotions_keras(paragraph : Paragraph): | |
# Split the huge chunk of text into a list of strings | |
text_list = [text.strip() for text in re.split(r'[.!?;\n]', paragraph.input) if text.strip()] | |
# Create a list to store predictions per text | |
predictions_per_text = [] | |
for text in text_list: | |
scores = keras_model(tf.constant([text]))['dense_1'][0] | |
emotion = [{'label': label, 'score': score} for label, score in zip(classes, scores.numpy())] | |
predictions_per_text.append(emotion) | |
# Create a dictionary to aggregate scores for each label | |
total = {} | |
# Iterate over each list and aggregate the scores | |
for prediction in predictions_per_text: | |
for emotion_dict in prediction: | |
label = emotion_dict['label'] | |
score = emotion_dict['score'] | |
total[label] = total.get(label, 0) + score | |
# Convert the dictionary to a list of dictionaries | |
result = [{"label": label, "score": score} for label, score in total.items()] | |
# Sort the result in descending order based on score | |
sorted_result = sorted(result, key=lambda x: x['score'], reverse=True) | |
return {"predictions": sorted_result} | |
# if __name__ == "__main__": | |
# uvicorn.run("api:app", host="0.0.0.0", port=8000, reload=True) |