rishi2025 commited on
Commit
4284363
Β·
verified Β·
1 Parent(s): 4d7d000

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +474 -371
app.py CHANGED
@@ -5,6 +5,7 @@ import logging
5
  import os
6
  from pathlib import Path
7
  from datetime import datetime
 
8
 
9
  import torch
10
  import numpy as np
@@ -15,19 +16,42 @@ from diffusers import AutoModel
15
  import gradio as gr
16
  import tempfile
17
  from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  from src.pipeline_wan_nag import NAGWanPipeline
20
  from src.transformer_wan_nag import NagWanTransformer3DModel
21
 
22
  # MMAudio imports
23
  try:
24
- import mmaudio
25
  except ImportError:
26
- os.system("pip install -e .")
27
- import mmaudio
28
 
29
  from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate,
30
- load_video, make_video, setup_eval_logging)
31
  from mmaudio.model.flow_matching import FlowMatching
32
  from mmaudio.model.networks import MMAudio, get_my_mmaudio
33
  from mmaudio.model.sequence_config import SequenceConfig
@@ -51,7 +75,7 @@ MIN_FRAMES_MODEL = 8
51
  MAX_FRAMES_MODEL = 129
52
 
53
  DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
54
- DEFAULT_AUDIO_NEGATIVE_PROMPT = "music"
55
 
56
  # NAG Model Settings
57
  MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
@@ -72,421 +96,500 @@ setup_eval_logging()
72
 
73
  # Initialize NAG Video Model
74
  try:
75
- vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
76
- wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
77
- transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
78
- pipe = NAGWanPipeline.from_pretrained(
79
- MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
80
- )
81
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
82
- pipe.to("cuda")
83
-
84
- pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
85
- pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
86
- pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
87
- print("NAG Video Model loaded successfully!")
88
  except Exception as e:
89
- print(f"Error loading NAG Video Model: {e}")
90
- pipe = None
91
 
92
  # Initialize MMAudio Model
93
  def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
94
- seq_cfg = audio_model_config.seq_cfg
95
-
96
- net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
97
- net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
98
- log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
99
-
100
- feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
101
- synchformer_ckpt=audio_model_config.synchformer_ckpt,
102
- enable_conditions=True,
103
- mode=audio_model_config.mode,
104
- bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
105
- need_vae_encoder=False)
106
- feature_utils = feature_utils.to(device, dtype).eval()
107
-
108
- return net, feature_utils, seq_cfg
109
 
110
  try:
111
- audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
112
- print("MMAudio Model loaded successfully!")
113
  except Exception as e:
114
- print(f"Error loading MMAudio Model: {e}")
115
- audio_net = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  # Audio generation function
118
  @torch.inference_mode()
119
- def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
120
- """Generate and add audio to video using MMAudio"""
121
- if audio_net is None:
122
- print("MMAudio model not loaded, returning video without audio")
123
- return video_path
124
-
125
- try:
126
- rng = torch.Generator(device=device)
127
- rng.seed() # Random seed for audio
128
- fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
129
-
130
- video_info = load_video(video_path, duration)
131
- clip_frames = video_info.clip_frames
132
- sync_frames = video_info.sync_frames
133
- duration = video_info.duration_sec
134
- clip_frames = clip_frames.unsqueeze(0)
135
- sync_frames = sync_frames.unsqueeze(0)
136
- audio_seq_cfg.duration = duration
137
- audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
138
-
139
- audios = mmaudio_generate(clip_frames,
140
- sync_frames, [prompt],
141
- negative_text=[audio_negative_prompt],
142
- feature_utils=audio_feature_utils,
143
- net=audio_net,
144
- fm=fm,
145
- rng=rng,
146
- cfg_strength=audio_cfg_strength)
147
- audio = audios.float().cpu()[0]
148
-
149
- # Create video with audio
150
- video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
151
- make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
152
-
153
- return video_with_audio_path
154
- except Exception as e:
155
- print(f"Error in audio generation: {e}")
156
- return video_path
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
  # Combined generation function
159
  def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds,
160
- steps, seed, randomize_seed, enable_audio, audio_negative_prompt,
161
- audio_steps, audio_cfg_strength):
162
- # Calculate total duration including audio processing if enabled
163
- video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
164
- audio_duration = 30 if enable_audio else 0 # Additional time for audio processing
165
- return video_duration + audio_duration
166
 
167
  @spaces.GPU(duration=get_duration)
168
  def generate_video_with_audio(
169
- prompt,
170
- nag_negative_prompt, nag_scale,
171
- height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
172
- steps=DEFAULT_STEPS,
173
- seed=DEFAULT_SEED, randomize_seed=False,
174
- enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
175
- audio_steps=25, audio_cfg_strength=4.5,
 
176
  ):
177
- if pipe is None:
178
- return None, DEFAULT_SEED
179
-
180
- try:
181
- # Generate video first
182
- target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
183
- target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
184
-
185
- num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
186
-
187
- current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
188
-
189
- print(f"Generating video with: prompt='{prompt}', resolution={target_w}x{target_h}, frames={num_frames}")
190
-
191
- with torch.inference_mode():
192
- nag_output_frames_list = pipe(
193
- prompt=prompt,
194
- nag_negative_prompt=nag_negative_prompt,
195
- nag_scale=nag_scale,
196
- nag_tau=3.5,
197
- nag_alpha=0.5,
198
- height=target_h, width=target_w, num_frames=num_frames,
199
- guidance_scale=0.,
200
- num_inference_steps=int(steps),
201
- generator=torch.Generator(device="cuda").manual_seed(current_seed)
202
- ).frames[0]
203
-
204
- # Save initial video without audio
205
- with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
206
- temp_video_path = tmpfile.name
207
- export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
208
- print(f"Video saved to: {temp_video_path}")
209
-
210
- # Add audio if enabled
211
- if enable_audio:
212
- try:
213
- print("Adding audio to video...")
214
- final_video_path = add_audio_to_video(
215
- temp_video_path,
216
- prompt, # Use the same prompt for audio generation
217
- audio_negative_prompt,
218
- audio_steps,
219
- audio_cfg_strength,
220
- duration_seconds
221
- )
222
- # Clean up temp video
223
- if os.path.exists(temp_video_path) and final_video_path != temp_video_path:
224
- os.remove(temp_video_path)
225
- print(f"Final video with audio: {final_video_path}")
226
- except Exception as e:
227
- log.error(f"Audio generation failed: {e}")
228
- final_video_path = temp_video_path
229
- else:
230
- final_video_path = temp_video_path
231
-
232
- return final_video_path, current_seed
233
- except Exception as e:
234
- print(f"Error in video generation: {e}")
235
- return None, current_seed
 
236
 
237
  # Example generation function - simplified
238
  def set_example(prompt, nag_negative_prompt, nag_scale):
239
- """Set example values in the UI without triggering generation"""
240
- return (
241
- prompt,
242
- nag_negative_prompt,
243
- nag_scale,
244
- DEFAULT_H_SLIDER_VALUE,
245
- DEFAULT_W_SLIDER_VALUE,
246
- DEFAULT_DURATION_SECONDS,
247
- DEFAULT_STEPS,
248
- DEFAULT_SEED,
249
- True, # randomize_seed
250
- True, # enable_audio
251
- DEFAULT_AUDIO_NEGATIVE_PROMPT,
252
- 25, # audio_steps
253
- 4.5 # audio_cfg_strength
254
- )
 
255
 
256
  # Examples with audio descriptions
257
  examples = [
258
- ["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
259
- ["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, COβ‚‚ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist's hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
260
- ["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage cafΓ©-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at –8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
261
  ]
262
 
263
  # CSS styling - Fixed for better layout
264
  css = """
265
  /* Right column - video output */
266
  .video-output {
267
- border-radius: 15px;
268
- overflow: hidden;
269
- box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
270
- width: 100% !important;
271
- height: auto !important;
272
- min-height: 400px;
273
  }
274
 
275
  /* Ensure video container is responsive */
276
  .video-output video {
277
- width: 100% !important;
278
- height: auto !important;
279
- max-height: 600px;
280
- object-fit: contain;
281
- display: block;
282
  }
283
 
284
  /* Remove any overlay or background from video container */
285
  .video-output > div {
286
- background: transparent !important;
287
- padding: 0 !important;
288
  }
289
 
290
  /* Remove gradio's default video player overlay */
291
  .video-output .wrap {
292
- background: transparent !important;
293
  }
294
 
295
  /* Ensure no gray overlay on video controls */
296
  .video-output video::-webkit-media-controls-enclosure {
297
- background: transparent;
298
  }
299
  """
300
 
301
  # Gradio interface - Fixed structure
302
  with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
303
- gr.HTML("""
304
- <div class="container">
305
- <h1 class="main-title">🎬 VEO3 Free</h1>
306
- <p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
307
- </div>
308
- """)
309
-
310
- gr.HTML("""
311
- <div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
312
- <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
313
- <img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
314
- </a>
315
-
316
- <a href="https://discord.gg/openfreeai" target="_blank">
317
- <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
318
- </a>
319
- </div>
320
- """)
321
-
322
- with gr.Row(equal_height=True):
323
- with gr.Column(scale=5):
324
- with gr.Group(elem_classes="prompt-container"):
325
- prompt = gr.Textbox(
326
- label="✨ Video Prompt (also used for audio generation)",
327
- placeholder="Describe your video scene in detail...",
328
- lines=3,
329
- elem_classes="prompt-input"
330
- )
331
-
332
- with gr.Accordion("🎨 Advanced Video Settings", open=False):
333
- nag_negative_prompt = gr.Textbox(
334
- label="Video Negative Prompt",
335
- value=DEFAULT_NAG_NEGATIVE_PROMPT,
336
- lines=2,
337
- )
338
- nag_scale = gr.Slider(
339
- label="NAG Scale",
340
- minimum=1.0,
341
- maximum=20.0,
342
- step=0.25,
343
- value=11.0,
344
- info="Higher values = stronger guidance"
345
- )
346
-
347
- with gr.Group(elem_classes="settings-panel"):
348
- gr.Markdown("### βš™οΈ Video Settings")
349
-
350
- with gr.Row():
351
- duration_seconds_input = gr.Slider(
352
- minimum=1,
353
- maximum=8,
354
- step=1,
355
- value=DEFAULT_DURATION_SECONDS,
356
- label="πŸ“± Duration (seconds)",
357
- elem_classes="slider-container"
358
- )
359
- steps_slider = gr.Slider(
360
- minimum=1,
361
- maximum=8,
362
- step=1,
363
- value=DEFAULT_STEPS,
364
- label="πŸ”„ Inference Steps",
365
- elem_classes="slider-container"
366
- )
367
-
368
- with gr.Row():
369
- height_input = gr.Slider(
370
- minimum=SLIDER_MIN_H,
371
- maximum=SLIDER_MAX_H,
372
- step=MOD_VALUE,
373
- value=DEFAULT_H_SLIDER_VALUE,
374
- label=f"πŸ“ Height (Γ—{MOD_VALUE})",
375
- elem_classes="slider-container"
376
- )
377
- width_input = gr.Slider(
378
- minimum=SLIDER_MIN_W,
379
- maximum=SLIDER_MAX_W,
380
- step=MOD_VALUE,
381
- value=DEFAULT_W_SLIDER_VALUE,
382
- label=f"πŸ“ Width (Γ—{MOD_VALUE})",
383
- elem_classes="slider-container"
384
- )
385
-
386
- with gr.Row():
387
- seed_input = gr.Slider(
388
- label="🌱 Seed",
389
- minimum=0,
390
- maximum=MAX_SEED,
391
- step=1,
392
- value=DEFAULT_SEED,
393
- interactive=True
394
- )
395
- randomize_seed_checkbox = gr.Checkbox(
396
- label="🎲 Random Seed",
397
- value=True,
398
- interactive=True
399
- )
400
-
401
- with gr.Group(elem_classes="audio-settings"):
402
- gr.Markdown("### 🎡 Audio Generation Settings")
403
-
404
- enable_audio = gr.Checkbox(
405
- label="πŸ”Š Enable Automatic Audio Generation",
406
- value=True,
407
- interactive=True
408
- )
409
-
410
- with gr.Column(visible=True) as audio_settings_group:
411
- audio_negative_prompt = gr.Textbox(
412
- label="Audio Negative Prompt",
413
- value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
414
- placeholder="Elements to avoid in audio (e.g., music, speech)",
415
- )
416
-
417
- with gr.Row():
418
- audio_steps = gr.Slider(
419
- minimum=10,
420
- maximum=50,
421
- step=5,
422
- value=25,
423
- label="🎚️ Audio Steps",
424
- info="More steps = better quality"
425
- )
426
- audio_cfg_strength = gr.Slider(
427
- minimum=1.0,
428
- maximum=10.0,
429
- step=0.5,
430
- value=4.5,
431
- label="πŸŽ›οΈ Audio Guidance",
432
- info="Strength of prompt guidance"
433
- )
434
-
435
- # Toggle audio settings visibility
436
- enable_audio.change(
437
- fn=lambda x: gr.update(visible=x),
438
- inputs=[enable_audio],
439
- outputs=[audio_settings_group]
440
- )
441
-
442
- generate_button = gr.Button(
443
- "🎬 Generate Video with Audio",
444
- variant="primary",
445
- elem_classes="generate-btn"
446
- )
447
-
448
- with gr.Column(scale=5):
449
- video_output = gr.Video(
450
- label="Generated Video with Audio",
451
- autoplay=True,
452
- interactive=False,
453
- elem_classes="video-output",
454
- height=600
455
- )
456
-
457
- gr.HTML("""
458
- <div style="text-align: center; margin-top: 20px; color: #6b7280;">
459
- <p>πŸ’‘ Tip: The same prompt is used for both video and audio generation!</p>
460
- <p>🎧 Audio is automatically matched to the visual content</p>
461
- </div>
462
- """)
463
-
464
- # Examples section moved outside of columns
465
- with gr.Row():
466
- gr.Markdown("### 🎯 Example Prompts")
467
-
468
- gr.Examples(
469
- examples=examples,
470
- inputs=[prompt, nag_negative_prompt, nag_scale],
471
- outputs=None, # Don't connect outputs to avoid index issues
472
- cache_examples=False
473
- )
474
-
475
- # Connect UI elements
476
- ui_inputs = [
477
- prompt,
478
- nag_negative_prompt, nag_scale,
479
- height_input, width_input, duration_seconds_input,
480
- steps_slider,
481
- seed_input, randomize_seed_checkbox,
482
- enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength,
483
- ]
484
-
485
- generate_button.click(
486
- fn=generate_video_with_audio,
487
- inputs=ui_inputs,
488
- outputs=[video_output, seed_input],
489
- )
 
 
 
 
 
 
490
 
491
  if __name__ == "__main__":
492
- demo.queue().launch( allowed_paths=["/","/tmp","/tmp/gradio"] )
 
5
  import os
6
  from pathlib import Path
7
  from datetime import datetime
8
+ import re
9
 
10
  import torch
11
  import numpy as np
 
16
  import gradio as gr
17
  import tempfile
18
  from huggingface_hub import hf_hub_download
19
+ import traceback
20
+
21
+ # Patch for scaled_dot_product_attention to fix enable_gqa issue
22
+ import torch.nn.functional as F
23
+
24
+ original_sdpa = F.scaled_dot_product_attention
25
+
26
+ def patched_scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, enable_gqa=None):
27
+ # enable_gqa νŒŒλΌλ―Έν„°λ₯Ό λ¬΄μ‹œν•˜κ³  λ‚˜λ¨Έμ§€ νŒŒλΌλ―Έν„°λ§Œ 전달
28
+ kwargs = {}
29
+ if attn_mask is not None:
30
+ kwargs['attn_mask'] = attn_mask
31
+ if dropout_p != 0.0:
32
+ kwargs['dropout_p'] = dropout_p
33
+ if is_causal:
34
+ kwargs['is_causal'] = is_causal
35
+ if scale is not None:
36
+ kwargs['scale'] = scale
37
+
38
+ return original_sdpa(query, key, value, **kwargs)
39
+
40
+ # 패치 적용
41
+ F.scaled_dot_product_attention = patched_scaled_dot_product_attention
42
 
43
  from src.pipeline_wan_nag import NAGWanPipeline
44
  from src.transformer_wan_nag import NagWanTransformer3DModel
45
 
46
  # MMAudio imports
47
  try:
48
+ import mmaudio
49
  except ImportError:
50
+ os.system("pip install -e .")
51
+ import mmaudio
52
 
53
  from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate,
54
+ load_video, make_video, setup_eval_logging)
55
  from mmaudio.model.flow_matching import FlowMatching
56
  from mmaudio.model.networks import MMAudio, get_my_mmaudio
57
  from mmaudio.model.sequence_config import SequenceConfig
 
75
  MAX_FRAMES_MODEL = 129
76
 
77
  DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
78
+ DEFAULT_AUDIO_NEGATIVE_PROMPT = "music, speech, voice, singing, narration"
79
 
80
  # NAG Model Settings
81
  MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
 
96
 
97
  # Initialize NAG Video Model
98
  try:
99
+ vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
100
+ wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
101
+ transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
102
+ pipe = NAGWanPipeline.from_pretrained(
103
+ MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
104
+ )
105
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
106
+ pipe.to("cuda")
107
+
108
+ pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
109
+ pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
110
+ pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
111
+ print("NAG Video Model loaded successfully!")
112
  except Exception as e:
113
+ print(f"Error loading NAG Video Model: {e}")
114
+ pipe = None
115
 
116
  # Initialize MMAudio Model
117
  def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
118
+ seq_cfg = audio_model_config.seq_cfg
119
+
120
+ net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
121
+ net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
122
+ log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
123
+
124
+ feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
125
+ synchformer_ckpt=audio_model_config.synchformer_ckpt,
126
+ enable_conditions=True,
127
+ mode=audio_model_config.mode,
128
+ bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
129
+ need_vae_encoder=False)
130
+ feature_utils = feature_utils.to(device, dtype).eval()
131
+
132
+ return net, feature_utils, seq_cfg
133
 
134
  try:
135
+ audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
136
+ print("MMAudio Model loaded successfully!")
137
  except Exception as e:
138
+ print(f"Error loading MMAudio Model: {e}")
139
+ audio_net = None
140
+
141
+ # λΉ„λ””μ˜€ ν”„λ‘¬ν”„νŠΈλ₯Ό μ˜€λ””μ˜€ ν”„λ‘¬ν”„νŠΈλ‘œ λ³€ν™˜ν•˜λŠ” ν•¨μˆ˜
142
+ def extract_audio_description(video_prompt):
143
+ """λΉ„λ””μ˜€ ν”„λ‘¬ν”„νŠΈμ—μ„œ μ˜€λ””μ˜€ κ΄€λ ¨ μ„€λͺ… μΆ”μΆœ/λ³€ν™˜"""
144
+
145
+ # ν‚€μ›Œλ“œ λ§€ν•‘
146
+ audio_keywords = {
147
+ 'car': 'car engine sound, vehicle noise',
148
+ 'porsche': 'sports car engine roar, exhaust sound',
149
+ 'guitar': 'electric guitar playing, guitar music',
150
+ 'concert': 'crowd cheering, live music, applause',
151
+ 'motorcycle': 'motorcycle engine sound, motor rumble',
152
+ 'highway': 'traffic noise, road ambience',
153
+ 'rain': 'rain sounds, water drops',
154
+ 'wind': 'wind blowing sound',
155
+ 'ocean': 'ocean waves, water sounds',
156
+ 'city': 'urban ambience, city traffic sounds',
157
+ 'singer': 'singing voice, vocals',
158
+ 'crowd': 'crowd noise, people talking',
159
+ 'flames': 'fire crackling sound',
160
+ 'pyro': 'fire whoosh, flame burst sound',
161
+ 'explosion': 'explosion sound, blast',
162
+ 'countryside': 'nature ambience, birds chirping',
163
+ 'wheat fields': 'wind through grass, rural ambience',
164
+ 'engine': 'motor sound, mechanical noise',
165
+ 'flat-six engine': 'sports car engine sound',
166
+ 'roaring': 'loud engine roar',
167
+ 'thunderous': 'loud booming sound',
168
+ 'child': 'children playing sounds',
169
+ 'running': 'footsteps sound',
170
+ 'woman': 'ambient sounds',
171
+ 'phone': 'subtle electronic ambience',
172
+ 'advertisement': 'modern ambient sounds'
173
+ }
174
+
175
+ # κ°„λ‹¨ν•œ ν‚€μ›Œλ“œ 기반 λ³€ν™˜
176
+ audio_descriptions = []
177
+ lower_prompt = video_prompt.lower()
178
+
179
+ for key, value in audio_keywords.items():
180
+ if key in lower_prompt:
181
+ audio_descriptions.append(value)
182
+
183
+ # κΈ°λ³Έκ°’ μ„€μ •
184
+ if not audio_descriptions:
185
+ # ν”„λ‘¬ν”„νŠΈμ— λͺ…μ‹œμ μΈ μ˜€λ””μ˜€ μ„€λͺ…이 μžˆλŠ”μ§€ 확인
186
+ if 'sound' in lower_prompt or 'audio' in lower_prompt or 'noise' in lower_prompt:
187
+ # ν”„λ‘¬ν”„νŠΈμ—μ„œ μ˜€λ””μ˜€ κ΄€λ ¨ λΆ€λΆ„λ§Œ μΆ”μΆœ
188
+ audio_pattern = r'([^.]*(?:sound|audio|noise|music|voice|roar|rumble)[^.]*)'
189
+ matches = re.findall(audio_pattern, lower_prompt, re.IGNORECASE)
190
+ if matches:
191
+ return ', '.join(matches)
192
+
193
+ # κΈ°λ³Έ ambient sound
194
+ return "ambient environmental sounds matching the scene"
195
+
196
+ return ', '.join(audio_descriptions)
197
 
198
  # Audio generation function
199
  @torch.inference_mode()
200
+ def add_audio_to_video(video_path, prompt, audio_custom_prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
201
+ """Generate and add audio to video using MMAudio"""
202
+ if audio_net is None:
203
+ print("MMAudio model not loaded, returning video without audio")
204
+ return video_path
205
+
206
+ try:
207
+ # μ»€μŠ€ν…€ μ˜€λ””μ˜€ ν”„λ‘¬ν”„νŠΈκ°€ 있으면 μ‚¬μš©, μ—†μœΌλ©΄ λΉ„λ””μ˜€ ν”„λ‘¬ν”„νŠΈμ—μ„œ μΆ”μΆœ
208
+ if audio_custom_prompt and audio_custom_prompt.strip():
209
+ audio_prompt = audio_custom_prompt.strip()
210
+ else:
211
+ audio_prompt = extract_audio_description(prompt)
212
+
213
+ print(f"Original prompt: {prompt}")
214
+ print(f"Audio prompt: {audio_prompt}")
215
+
216
+ rng = torch.Generator(device=device)
217
+ rng.manual_seed(random.randint(0, 2**32 - 1)) # 더 λͺ…ν™•ν•œ 랜덀 μ‹œλ“œ
218
+ fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
219
+
220
+ video_info = load_video(video_path, duration)
221
+ clip_frames = video_info.clip_frames
222
+ sync_frames = video_info.sync_frames
223
+ duration = video_info.duration_sec
224
+ clip_frames = clip_frames.unsqueeze(0)
225
+ sync_frames = sync_frames.unsqueeze(0)
226
+ audio_seq_cfg.duration = duration
227
+ audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
228
+
229
+ # ν–₯μƒλœ λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ
230
+ enhanced_negative = f"{audio_negative_prompt}, distortion, static noise, silence, random beeps"
231
+
232
+ audios = mmaudio_generate(clip_frames,
233
+ sync_frames, [audio_prompt], # λ³€ν™˜λœ μ˜€λ””μ˜€ ν”„λ‘¬ν”„νŠΈ μ‚¬μš©
234
+ negative_text=[enhanced_negative],
235
+ feature_utils=audio_feature_utils,
236
+ net=audio_net,
237
+ fm=fm,
238
+ rng=rng,
239
+ cfg_strength=audio_cfg_strength)
240
+ audio = audios.float().cpu()[0]
241
+
242
+ # Create video with audio
243
+ video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
244
+ make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
245
+
246
+ return video_with_audio_path
247
+ except Exception as e:
248
+ print(f"Error in audio generation: {e}")
249
+ traceback.print_exc()
250
+ return video_path
251
 
252
  # Combined generation function
253
  def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds,
254
+ steps, seed, randomize_seed, enable_audio, audio_custom_prompt,
255
+ audio_negative_prompt, audio_steps, audio_cfg_strength):
256
+ # Calculate total duration including audio processing if enabled
257
+ video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
258
+ audio_duration = 30 if enable_audio else 0 # Additional time for audio processing
259
+ return video_duration + audio_duration
260
 
261
  @spaces.GPU(duration=get_duration)
262
  def generate_video_with_audio(
263
+ prompt,
264
+ nag_negative_prompt, nag_scale,
265
+ height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
266
+ steps=DEFAULT_STEPS,
267
+ seed=DEFAULT_SEED, randomize_seed=False,
268
+ enable_audio=True, audio_custom_prompt="",
269
+ audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
270
+ audio_steps=30, audio_cfg_strength=4.5,
271
  ):
272
+ if pipe is None:
273
+ return None, DEFAULT_SEED
274
+
275
+ try:
276
+ # Generate video first
277
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
278
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
279
+
280
+ num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
281
+
282
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
283
+
284
+ print(f"Generating video with: prompt='{prompt}', resolution={target_w}x{target_h}, frames={num_frames}")
285
+
286
+ with torch.inference_mode():
287
+ nag_output_frames_list = pipe(
288
+ prompt=prompt,
289
+ nag_negative_prompt=nag_negative_prompt,
290
+ nag_scale=nag_scale,
291
+ nag_tau=3.5,
292
+ nag_alpha=0.5,
293
+ height=target_h, width=target_w, num_frames=num_frames,
294
+ guidance_scale=0.,
295
+ num_inference_steps=int(steps),
296
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
297
+ ).frames[0]
298
+
299
+ # Save initial video without audio
300
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
301
+ temp_video_path = tmpfile.name
302
+ export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
303
+ print(f"Video saved to: {temp_video_path}")
304
+
305
+ # Add audio if enabled
306
+ if enable_audio:
307
+ try:
308
+ print("Adding audio to video...")
309
+ final_video_path = add_audio_to_video(
310
+ temp_video_path,
311
+ prompt,
312
+ audio_custom_prompt,
313
+ audio_negative_prompt,
314
+ audio_steps,
315
+ audio_cfg_strength,
316
+ duration_seconds
317
+ )
318
+ # Clean up temp video
319
+ if os.path.exists(temp_video_path) and final_video_path != temp_video_path:
320
+ os.remove(temp_video_path)
321
+ print(f"Final video with audio: {final_video_path}")
322
+ except Exception as e:
323
+ log.error(f"Audio generation failed: {e}")
324
+ final_video_path = temp_video_path
325
+ else:
326
+ final_video_path = temp_video_path
327
+
328
+ return final_video_path, current_seed
329
+ except Exception as e:
330
+ print(f"Error in video generation: {e}")
331
+ return None, current_seed
332
 
333
  # Example generation function - simplified
334
  def set_example(prompt, nag_negative_prompt, nag_scale):
335
+ """Set example values in the UI without triggering generation"""
336
+ return (
337
+ prompt,
338
+ nag_negative_prompt,
339
+ nag_scale,
340
+ DEFAULT_H_SLIDER_VALUE,
341
+ DEFAULT_W_SLIDER_VALUE,
342
+ DEFAULT_DURATION_SECONDS,
343
+ DEFAULT_STEPS,
344
+ DEFAULT_SEED,
345
+ True, # randomize_seed
346
+ True, # enable_audio
347
+ "", # audio_custom_prompt
348
+ DEFAULT_AUDIO_NEGATIVE_PROMPT,
349
+ 30, # audio_steps
350
+ 4.5 # audio_cfg_strength
351
+ )
352
 
353
  # Examples with audio descriptions
354
  examples = [
355
+ ["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
356
+ ["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, COβ‚‚ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist's hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
357
+ ["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage cafΓ©-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at –8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
358
  ]
359
 
360
  # CSS styling - Fixed for better layout
361
  css = """
362
  /* Right column - video output */
363
  .video-output {
364
+ border-radius: 15px;
365
+ overflow: hidden;
366
+ box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
367
+ width: 100% !important;
368
+ height: auto !important;
369
+ min-height: 400px;
370
  }
371
 
372
  /* Ensure video container is responsive */
373
  .video-output video {
374
+ width: 100% !important;
375
+ height: auto !important;
376
+ max-height: 600px;
377
+ object-fit: contain;
378
+ display: block;
379
  }
380
 
381
  /* Remove any overlay or background from video container */
382
  .video-output > div {
383
+ background: transparent !important;
384
+ padding: 0 !important;
385
  }
386
 
387
  /* Remove gradio's default video player overlay */
388
  .video-output .wrap {
389
+ background: transparent !important;
390
  }
391
 
392
  /* Ensure no gray overlay on video controls */
393
  .video-output video::-webkit-media-controls-enclosure {
394
+ background: transparent;
395
  }
396
  """
397
 
398
  # Gradio interface - Fixed structure
399
  with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
400
+ gr.HTML("""
401
+ <div class="container">
402
+ <h1 class="main-title">🎬 VEO3 Free</h1>
403
+ <p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
404
+ </div>
405
+ """)
406
+
407
+ gr.HTML("""
408
+ <div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
409
+ <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
410
+ <img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
411
+ </a>
412
+
413
+ <a href="https://discord.gg/openfreeai" target="_blank">
414
+ <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
415
+ </a>
416
+ </div>
417
+ """)
418
+
419
+ with gr.Row(equal_height=True):
420
+ with gr.Column(scale=5):
421
+ with gr.Group(elem_classes="prompt-container"):
422
+ prompt = gr.Textbox(
423
+ label="✨ Video Prompt (also used for audio generation)",
424
+ placeholder="Describe your video scene in detail...",
425
+ lines=3,
426
+ elem_classes="prompt-input"
427
+ )
428
+
429
+ with gr.Accordion("🎨 Advanced Video Settings", open=False):
430
+ nag_negative_prompt = gr.Textbox(
431
+ label="Video Negative Prompt",
432
+ value=DEFAULT_NAG_NEGATIVE_PROMPT,
433
+ lines=2,
434
+ )
435
+ nag_scale = gr.Slider(
436
+ label="NAG Scale",
437
+ minimum=1.0,
438
+ maximum=20.0,
439
+ step=0.25,
440
+ value=11.0,
441
+ info="Higher values = stronger guidance"
442
+ )
443
+
444
+ with gr.Group(elem_classes="settings-panel"):
445
+ gr.Markdown("### βš™οΈ Video Settings")
446
+
447
+ with gr.Row():
448
+ duration_seconds_input = gr.Slider(
449
+ minimum=1,
450
+ maximum=8,
451
+ step=1,
452
+ value=DEFAULT_DURATION_SECONDS,
453
+ label="πŸ“± Duration (seconds)",
454
+ elem_classes="slider-container"
455
+ )
456
+ steps_slider = gr.Slider(
457
+ minimum=1,
458
+ maximum=8,
459
+ step=1,
460
+ value=DEFAULT_STEPS,
461
+ label="πŸ”„ Inference Steps",
462
+ elem_classes="slider-container"
463
+ )
464
+
465
+ with gr.Row():
466
+ height_input = gr.Slider(
467
+ minimum=SLIDER_MIN_H,
468
+ maximum=SLIDER_MAX_H,
469
+ step=MOD_VALUE,
470
+ value=DEFAULT_H_SLIDER_VALUE,
471
+ label=f"πŸ“ Height (Γ—{MOD_VALUE})",
472
+ elem_classes="slider-container"
473
+ )
474
+ width_input = gr.Slider(
475
+ minimum=SLIDER_MIN_W,
476
+ maximum=SLIDER_MAX_W,
477
+ step=MOD_VALUE,
478
+ value=DEFAULT_W_SLIDER_VALUE,
479
+ label=f"πŸ“ Width (Γ—{MOD_VALUE})",
480
+ elem_classes="slider-container"
481
+ )
482
+
483
+ with gr.Row():
484
+ seed_input = gr.Slider(
485
+ label="🌱 Seed",
486
+ minimum=0,
487
+ maximum=MAX_SEED,
488
+ step=1,
489
+ value=DEFAULT_SEED,
490
+ interactive=True
491
+ )
492
+ randomize_seed_checkbox = gr.Checkbox(
493
+ label="🎲 Random Seed",
494
+ value=True,
495
+ interactive=True
496
+ )
497
+
498
+ with gr.Group(elem_classes="audio-settings"):
499
+ gr.Markdown("### 🎡 Audio Generation Settings")
500
+
501
+ enable_audio = gr.Checkbox(
502
+ label="πŸ”Š Enable Automatic Audio Generation",
503
+ value=True,
504
+ interactive=True
505
+ )
506
+
507
+ with gr.Column(visible=True) as audio_settings_group:
508
+ audio_custom_prompt = gr.Textbox(
509
+ label="Custom Audio Prompt (Optional)",
510
+ placeholder="Leave empty to auto-generate from video prompt, or specify custom audio description (e.g., 'car engine sound, traffic noise')",
511
+ value="",
512
+ )
513
+ audio_negative_prompt = gr.Textbox(
514
+ label="Audio Negative Prompt",
515
+ value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
516
+ placeholder="Elements to avoid in audio",
517
+ )
518
+
519
+ with gr.Row():
520
+ audio_steps = gr.Slider(
521
+ minimum=10,
522
+ maximum=50,
523
+ step=5,
524
+ value=30,
525
+ label="🎚️ Audio Steps",
526
+ info="More steps = better quality"
527
+ )
528
+ audio_cfg_strength = gr.Slider(
529
+ minimum=1.0,
530
+ maximum=10.0,
531
+ step=0.5,
532
+ value=4.5,
533
+ label="πŸŽ›οΈ Audio Guidance",
534
+ info="Strength of prompt guidance"
535
+ )
536
+
537
+ # Toggle audio settings visibility
538
+ enable_audio.change(
539
+ fn=lambda x: gr.update(visible=x),
540
+ inputs=[enable_audio],
541
+ outputs=[audio_settings_group]
542
+ )
543
+
544
+ generate_button = gr.Button(
545
+ "🎬 Generate Video with Audio",
546
+ variant="primary",
547
+ elem_classes="generate-btn"
548
+ )
549
+
550
+ with gr.Column(scale=5):
551
+ video_output = gr.Video(
552
+ label="Generated Video with Audio",
553
+ autoplay=True,
554
+ interactive=False,
555
+ elem_classes="video-output",
556
+ height=600
557
+ )
558
+
559
+ gr.HTML("""
560
+ <div style="text-align: center; margin-top: 20px; color: #6b7280;">
561
+ <p>πŸ’‘ Tip: For better audio, use Custom Audio Prompt with sound descriptions!</p>
562
+ <p>🎧 Examples: "car engine sound", "crowd cheering", "nature ambience"</p>
563
+ </div>
564
+ """)
565
+
566
+ # Examples section moved outside of columns
567
+ with gr.Row():
568
+ gr.Markdown("### 🎯 Example Prompts")
569
+
570
+ gr.Examples(
571
+ examples=examples,
572
+ inputs=[prompt, nag_negative_prompt, nag_scale],
573
+ outputs=None, # Don't connect outputs to avoid index issues
574
+ cache_examples=False
575
+ )
576
+
577
+ # Connect UI elements
578
+ ui_inputs = [
579
+ prompt,
580
+ nag_negative_prompt, nag_scale,
581
+ height_input, width_input, duration_seconds_input,
582
+ steps_slider,
583
+ seed_input, randomize_seed_checkbox,
584
+ enable_audio, audio_custom_prompt, audio_negative_prompt,
585
+ audio_steps, audio_cfg_strength,
586
+ ]
587
+
588
+ generate_button.click(
589
+ fn=generate_video_with_audio,
590
+ inputs=ui_inputs,
591
+ outputs=[video_output, seed_input],
592
+ )
593
 
594
  if __name__ == "__main__":
595
+ demo.queue().launch( allowed_paths=["/","/tmp","/tmp/gradio"] )