Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +79 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from deep_translator import GoogleTranslator
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
SpeechT5ForTextToSpeech,
|
| 9 |
+
SpeechT5HifiGan,
|
| 10 |
+
SpeechT5Processor,
|
| 11 |
+
VitsModel,
|
| 12 |
+
pipeline,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
|
| 17 |
+
device = "cpu"
|
| 18 |
+
# load speech translation checkpoint
|
| 19 |
+
asr_pipe = pipeline("automatic-speech-recognition",
|
| 20 |
+
model="openai/whisper-base", device=device)
|
| 21 |
+
|
| 22 |
+
# load text-to-speech mms-tts-id model (speaker embeddings included)
|
| 23 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-tel")
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tel")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def translate(audio):
|
| 28 |
+
outputs = asr_pipe(audio, max_new_tokens=256,
|
| 29 |
+
generate_kwargs={"task": "translate"})
|
| 30 |
+
return outputs["text"]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def synthesise(text):
|
| 34 |
+
inputs = tokenizer(text=text, return_tensors="pt")
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
speech = model(**inputs).waveform
|
| 37 |
+
return speech.reshape(-1, 1).cpu()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def speech_to_speech_translation(audio):
|
| 41 |
+
translated_text = translate(audio)
|
| 42 |
+
google_translated = GoogleTranslator(
|
| 43 |
+
source="en", target="tel").translate(translated_text)
|
| 44 |
+
synthesised_speech = synthesise(google_translated)
|
| 45 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 46 |
+
return 16000, synthesised_speech
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
title = "Cascaded STST"
|
| 50 |
+
description = """
|
| 51 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Indonesian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's
|
| 52 |
+
[MMS TTS IND](https://huggingface.co/facebook/mms-tts-ind) model for text-to-speech:
|
| 53 |
+

|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
demo = gr.Blocks()
|
| 57 |
+
|
| 58 |
+
mic_translate = gr.Interface(
|
| 59 |
+
fn=speech_to_speech_translation,
|
| 60 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
| 61 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 62 |
+
title=title,
|
| 63 |
+
description=description,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
file_translate = gr.Interface(
|
| 67 |
+
fn=speech_to_speech_translation,
|
| 68 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
| 69 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 70 |
+
examples=[["./example.wav"]],
|
| 71 |
+
title=title,
|
| 72 |
+
description=description,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
with demo:
|
| 76 |
+
gr.TabbedInterface([mic_translate, file_translate],
|
| 77 |
+
["Microphone", "Audio File"])
|
| 78 |
+
|
| 79 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
git+https://github.com/huggingface/transformers
|
| 3 |
+
datasets
|
| 4 |
+
sentencepiece
|
| 5 |
+
deep-translator
|