Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from deep_translator import GoogleTranslator | |
| from transformers import ( | |
| AutoTokenizer, | |
| VitsModel, | |
| pipeline | |
| ) | |
| device = "cpu" | |
| # Load speech recognition pipeline | |
| asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
| # Load text-to-speech model (for Telugu) | |
| model = VitsModel.from_pretrained("facebook/mms-tts-tel") | |
| tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tel") | |
| def translate(audio): | |
| outputs = asr_pipe(audio, generate_kwargs={"task": "translate"}) | |
| return outputs["text"] | |
| def synthesise(text): | |
| inputs = tokenizer(text=text, return_tensors="pt") | |
| with torch.no_grad(): | |
| speech = model(**inputs).waveform | |
| return speech.reshape(-1, 1).cpu() | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| google_translated = GoogleTranslator(source="en", target="tel").translate(translated_text) | |
| synthesised_speech = synthesise(google_translated) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| title = "Cascaded STST" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Telugu. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's [MMS TTS TEL](https://huggingface.co/facebook/mms-tts-tel) model for text-to-speech: | |
|  | |
| """ | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./example.wav"]], | |
| title=title, | |
| description=description | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| demo.launch() | |