Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import numpy as np
|
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
import torch
|
| 9 |
-
import requests
|
| 10 |
|
| 11 |
# Set up OpenAI client
|
| 12 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
|
@@ -16,8 +15,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 16 |
print(f"Using device: {device}")
|
| 17 |
|
| 18 |
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
|
| 19 |
-
metadata_path = 'question_metadata.csv'
|
| 20 |
-
embeddings_path = 'question_dataset_embeddings.npy'
|
| 21 |
|
| 22 |
metadata = pd.read_csv(metadata_path)
|
| 23 |
embeddings = np.load(embeddings_path)
|
|
@@ -38,94 +37,65 @@ st.title("Real-World Programming Question Mock Interview")
|
|
| 38 |
if "messages" not in st.session_state:
|
| 39 |
st.session_state.messages = []
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
if "generated_question" not in st.session_state:
|
| 42 |
-
st.session_state.generated_question = None
|
| 43 |
|
| 44 |
-
if "
|
| 45 |
-
st.session_state.
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
if st.session_state.generated_question:
|
| 53 |
-
st.sidebar.markdown(st.session_state.generated_question)
|
| 54 |
-
else:
|
| 55 |
-
st.sidebar.markdown("_No question generated yet._")
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
placeholder="Enter your code...",
|
| 64 |
-
)
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
else:
|
| 82 |
-
try:
|
| 83 |
-
evaluation_prompt = (
|
| 84 |
-
f"Question: {st.session_state.generated_question}\n\n"
|
| 85 |
-
f"Code:\n{code_input}\n\n"
|
| 86 |
-
f"Evaluate this code's correctness, efficiency, and style."
|
| 87 |
-
)
|
| 88 |
-
response = client.chat.completions.create(
|
| 89 |
-
model="gpt-4",
|
| 90 |
-
messages=[{"role": "user", "content": evaluation_prompt}],
|
| 91 |
-
)
|
| 92 |
-
evaluation_response = response.choices[0].message.content
|
| 93 |
-
st.session_state.evaluation_output = evaluation_response
|
| 94 |
-
|
| 95 |
-
# Add evaluation output to follow-up conversation
|
| 96 |
-
st.session_state.messages.append({"role": "assistant", "content": evaluation_response})
|
| 97 |
-
except Exception as e:
|
| 98 |
-
st.sidebar.error(f"Error during evaluation: {str(e)}")
|
| 99 |
-
|
| 100 |
-
# Display outputs below the main app content
|
| 101 |
-
st.subheader("Code Output")
|
| 102 |
-
st.text(st.session_state.code_output)
|
| 103 |
-
|
| 104 |
-
st.subheader("Evaluation Output")
|
| 105 |
-
st.text(st.session_state.evaluation_output)
|
| 106 |
-
|
| 107 |
-
# Main app logic for generating questions and follow-up conversation remains unchanged.
|
| 108 |
with st.form(key="input_form"):
|
| 109 |
-
company = st.text_input("Company", value="Google")
|
| 110 |
-
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
|
| 111 |
-
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
|
| 112 |
|
| 113 |
generate_button = st.form_submit_button(label="Generate")
|
| 114 |
|
| 115 |
if generate_button:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
| 120 |
-
query_embedding = query_embedding.reshape(1, -1)
|
| 121 |
-
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
| 122 |
-
top_index = similarities.argsort()[-1]
|
| 123 |
-
top_result = metadata.iloc[top_index].copy()
|
| 124 |
-
top_result['similarity_score'] = similarities[top_index]
|
| 125 |
-
return top_result
|
| 126 |
|
|
|
|
|
|
|
| 127 |
top_question = find_top_question(query)
|
| 128 |
|
|
|
|
| 129 |
detailed_prompt = (
|
| 130 |
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
|
| 131 |
f"**Company**: {top_question['company']}\n"
|
|
@@ -136,29 +106,76 @@ if generate_button:
|
|
| 136 |
f"\nPlease create a real-world interview question based on this information."
|
| 137 |
)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
for message in st.session_state.messages:
|
| 147 |
with st.chat_message(message["role"]):
|
| 148 |
st.markdown(message["content"])
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
import torch
|
|
|
|
| 9 |
|
| 10 |
# Set up OpenAI client
|
| 11 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
|
|
|
| 15 |
print(f"Using device: {device}")
|
| 16 |
|
| 17 |
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
|
| 18 |
+
metadata_path = 'question_metadata.csv' # Update this path if needed
|
| 19 |
+
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
|
| 20 |
|
| 21 |
metadata = pd.read_csv(metadata_path)
|
| 22 |
embeddings = np.load(embeddings_path)
|
|
|
|
| 37 |
if "messages" not in st.session_state:
|
| 38 |
st.session_state.messages = []
|
| 39 |
|
| 40 |
+
if "follow_up_mode" not in st.session_state:
|
| 41 |
+
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode
|
| 42 |
+
|
| 43 |
if "generated_question" not in st.session_state:
|
| 44 |
+
st.session_state.generated_question = None # Stores the generated question for persistence
|
| 45 |
|
| 46 |
+
if "debug_logs" not in st.session_state:
|
| 47 |
+
st.session_state.debug_logs = [] # Stores debug logs for toggling
|
| 48 |
|
| 49 |
+
# Function to find the top 1 most similar question based on user input
|
| 50 |
+
def find_top_question(query):
|
| 51 |
+
# Generate embedding for the query
|
| 52 |
+
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
|
| 53 |
+
|
| 54 |
+
# Reshape query_embedding to ensure it is a 2D array
|
| 55 |
+
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
|
| 56 |
|
| 57 |
+
# Compute cosine similarity between query embedding and dataset embeddings
|
| 58 |
+
similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Get the index of the most similar result (top 1)
|
| 61 |
+
top_index = similarities.argsort()[-1] # Index of highest similarity
|
| 62 |
|
| 63 |
+
# Retrieve metadata for the top result
|
| 64 |
+
top_result = metadata.iloc[top_index].copy()
|
| 65 |
+
top_result['similarity_score'] = similarities[top_index]
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
return top_result
|
| 68 |
|
| 69 |
+
# Function to generate response using OpenAI API with debugging logs
|
| 70 |
+
def generate_response(messages):
|
| 71 |
+
debug_log_entry = {"messages": messages}
|
| 72 |
+
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
|
| 73 |
+
|
| 74 |
+
response = client.chat.completions.create(
|
| 75 |
+
model="o1-mini",
|
| 76 |
+
messages=messages,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
return response.choices[0].message.content
|
| 80 |
+
|
| 81 |
+
# User input form for generating a new question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
with st.form(key="input_form"):
|
| 83 |
+
company = st.text_input("Company", value="Google") # Default value: Google
|
| 84 |
+
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium
|
| 85 |
+
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") # Default: Backtracking
|
| 86 |
|
| 87 |
generate_button = st.form_submit_button(label="Generate")
|
| 88 |
|
| 89 |
if generate_button:
|
| 90 |
+
# Clear session state and start fresh with follow-up mode disabled
|
| 91 |
+
st.session_state.messages = []
|
| 92 |
+
st.session_state.follow_up_mode = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# Create a query from user inputs and find the most relevant question
|
| 95 |
+
query = f"{company} {difficulty} {topic}"
|
| 96 |
top_question = find_top_question(query)
|
| 97 |
|
| 98 |
+
# Prepare a detailed prompt for GPT using the top question's details
|
| 99 |
detailed_prompt = (
|
| 100 |
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
|
| 101 |
f"**Company**: {top_question['company']}\n"
|
|
|
|
| 106 |
f"\nPlease create a real-world interview question based on this information."
|
| 107 |
)
|
| 108 |
|
| 109 |
+
# Generate response using GPT-4 with detailed prompt and debugging logs
|
| 110 |
+
response = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
|
| 111 |
+
|
| 112 |
+
# Store generated question in session state for persistence in sidebar and follow-up conversation state
|
| 113 |
+
st.session_state.generated_question = response
|
| 114 |
+
|
| 115 |
+
# Add the generated question to the conversation history as an assistant message (to make it part of follow-up conversations)
|
| 116 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 117 |
|
| 118 |
+
# Enable follow-up mode after generating the initial question
|
| 119 |
+
st.session_state.follow_up_mode = True
|
| 120 |
+
|
| 121 |
+
# Display chat messages from history on app rerun (for subsequent conversation)
|
| 122 |
for message in st.session_state.messages:
|
| 123 |
with st.chat_message(message["role"]):
|
| 124 |
st.markdown(message["content"])
|
| 125 |
|
| 126 |
+
# Chatbox for subsequent conversations with assistant (follow-up mode)
|
| 127 |
+
if st.session_state.follow_up_mode:
|
| 128 |
+
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
|
| 129 |
+
# Display user message in chat message container and add to session history
|
| 130 |
+
with st.chat_message("user"):
|
| 131 |
+
st.markdown(user_input)
|
| 132 |
+
|
| 133 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 134 |
+
|
| 135 |
+
# Generate assistant's response based on follow-up input using technical_interviewer_prompt as system prompt,
|
| 136 |
+
# including the generated question in context.
|
| 137 |
+
assistant_response = generate_response(
|
| 138 |
+
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
with st.chat_message("assistant"):
|
| 142 |
+
st.markdown(assistant_response)
|
| 143 |
+
|
| 144 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|
| 145 |
+
|
| 146 |
+
# Sidebar content to display persistent generated question (left sidebar)
|
| 147 |
+
st.sidebar.markdown("## Generated Question")
|
| 148 |
+
if st.session_state.generated_question:
|
| 149 |
+
st.sidebar.markdown(st.session_state.generated_question)
|
| 150 |
+
else:
|
| 151 |
+
st.sidebar.markdown("_No question generated yet._")
|
| 152 |
+
|
| 153 |
+
st.sidebar.markdown("""
|
| 154 |
+
## About
|
| 155 |
+
This is a Real-World Interview Question Generator powered by OpenAI's API.
|
| 156 |
+
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
|
| 157 |
+
Continue chatting with the assistant in the chatbox below.
|
| 158 |
+
""")
|
| 159 |
+
|
| 160 |
+
# Right sidebar toggleable debug logs and code interpreter section
|
| 161 |
+
with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
|
| 162 |
+
if len(st.session_state.debug_logs) > 0:
|
| 163 |
+
for log_entry in reversed(st.session_state.debug_logs): # Show most recent logs first
|
| 164 |
+
st.write(log_entry)
|
| 165 |
+
|
| 166 |
+
st.sidebar.markdown("---")
|
| 167 |
+
st.sidebar.markdown("## Python Code Interpreter")
|
| 168 |
+
code_input = st.sidebar.text_area("Write your Python code here:")
|
| 169 |
+
if st.sidebar.button("Run Code"):
|
| 170 |
+
try:
|
| 171 |
+
exec_globals = {}
|
| 172 |
+
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
|
| 173 |
+
output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
|
| 174 |
+
if output_key:
|
| 175 |
+
output_value = exec_globals[output_key[0]]
|
| 176 |
+
st.sidebar.success(f"Output: {output_value}")
|
| 177 |
+
else:
|
| 178 |
+
st.sidebar.success("Code executed successfully!")
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
st.sidebar.error(f"Error: {e}")
|