Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -1,4 +1,3 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
             
            import gradio as gr
         
     | 
| 3 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 4 | 
         
             
            from ultralytics import YOLO
         
     | 
| 
         @@ -6,58 +5,43 @@ from PIL import Image 
     | 
|
| 6 | 
         
             
            import cv2
         
     | 
| 7 | 
         
             
            import numpy as np
         
     | 
| 8 | 
         | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            # Download the YOLOv8 model for face detection
         
     | 
| 11 | 
         
             
            model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
         
     | 
| 12 | 
         
             
            model = YOLO(model_path)
         
     | 
| 13 | 
         | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
             
            def process_video(video_path):
         
     | 
| 16 | 
         
             
                # Open the video file
         
     | 
| 17 | 
         
             
                cap = cv2.VideoCapture(video_path)
         
     | 
| 18 | 
         
             
                unique_faces = set()
         
     | 
| 19 | 
         | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
             
                while cap.isOpened():
         
     | 
| 22 | 
         
             
                    ret, frame = cap.read()
         
     | 
| 23 | 
         
             
                    if not ret:
         
     | 
| 24 | 
         
             
                        break
         
     | 
| 25 | 
         | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
             
                    # Convert the frame to PIL Image
         
     | 
| 28 | 
         
             
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         
     | 
| 29 | 
         
             
                    pil_image = Image.fromarray(frame)
         
     | 
| 30 | 
         | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
             
                    # Detect faces in the frame
         
     | 
| 33 | 
         
             
                    output = model(pil_image)
         
     | 
| 34 | 
         
             
                    faces = output.pred[0]
         
     | 
| 35 | 
         | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
             
                    # Iterate over detected faces and add them to the set
         
     | 
| 38 | 
         
             
                    for face in faces:
         
     | 
| 39 | 
         
             
                        face_data = tuple(face.numpy())
         
     | 
| 40 | 
         
             
                        unique_faces.add(face_data)
         
     | 
| 41 | 
         | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
             
                cap.release()
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
             
                return len(unique_faces)
         
     | 
| 
         | 
|
| 47 | 
         
             
            # Gradio interface
         
     | 
| 48 | 
         
             
            iface = gr.Interface(
         
     | 
| 49 | 
         
             
                fn=process_video,
         
     | 
| 50 | 
         
            -
                inputs=gr. 
     | 
| 51 | 
         
             
                outputs="number",
         
     | 
| 52 | 
         
            -
                title="Unique Face Counter in Video" 
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                inputs=gr.Video(label="Upload Video"),
         
     | 
| 56 | 
         
            -
                outputs=gr.Textbox(label="Number of People Detected"),
         
     | 
| 57 | 
         
            -
                title="People Counter",
         
     | 
| 58 | 
         
            -
                description="Upload a video to count the number of people present."
         
     | 
| 59 | 
         
             
            )
         
     | 
| 60 | 
         | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
             
            if __name__ == "__main__":
         
     | 
| 63 | 
         
             
                iface.launch()
         
     | 
| 
         | 
|
| 
         | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 2 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 3 | 
         
             
            from ultralytics import YOLO
         
     | 
| 
         | 
|
| 5 | 
         
             
            import cv2
         
     | 
| 6 | 
         
             
            import numpy as np
         
     | 
| 7 | 
         | 
| 8 | 
         
            +
            # Download model from Hugging Face Hub
         
     | 
| 
         | 
|
| 9 | 
         
             
            model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
         
     | 
| 10 | 
         
             
            model = YOLO(model_path)
         
     | 
| 11 | 
         | 
| 
         | 
|
| 12 | 
         
             
            def process_video(video_path):
         
     | 
| 13 | 
         
             
                # Open the video file
         
     | 
| 14 | 
         
             
                cap = cv2.VideoCapture(video_path)
         
     | 
| 15 | 
         
             
                unique_faces = set()
         
     | 
| 16 | 
         | 
| 
         | 
|
| 17 | 
         
             
                while cap.isOpened():
         
     | 
| 18 | 
         
             
                    ret, frame = cap.read()
         
     | 
| 19 | 
         
             
                    if not ret:
         
     | 
| 20 | 
         
             
                        break
         
     | 
| 21 | 
         | 
| 
         | 
|
| 22 | 
         
             
                    # Convert the frame to PIL Image
         
     | 
| 23 | 
         
             
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
         
     | 
| 24 | 
         
             
                    pil_image = Image.fromarray(frame)
         
     | 
| 25 | 
         | 
| 
         | 
|
| 26 | 
         
             
                    # Detect faces in the frame
         
     | 
| 27 | 
         
             
                    output = model(pil_image)
         
     | 
| 28 | 
         
             
                    faces = output.pred[0]
         
     | 
| 29 | 
         | 
| 
         | 
|
| 30 | 
         
             
                    # Iterate over detected faces and add them to the set
         
     | 
| 31 | 
         
             
                    for face in faces:
         
     | 
| 32 | 
         
             
                        face_data = tuple(face.numpy())
         
     | 
| 33 | 
         
             
                        unique_faces.add(face_data)
         
     | 
| 34 | 
         | 
| 
         | 
|
| 35 | 
         
             
                cap.release()
         
     | 
| 
         | 
|
| 
         | 
|
| 36 | 
         
             
                return len(unique_faces)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
             
            # Gradio interface
         
     | 
| 39 | 
         
             
            iface = gr.Interface(
         
     | 
| 40 | 
         
             
                fn=process_video,
         
     | 
| 41 | 
         
            +
                inputs=gr.Video(label="Upload a Video"),
         
     | 
| 42 | 
         
             
                outputs="number",
         
     | 
| 43 | 
         
            +
                title="Unique Face Counter in Video"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 44 | 
         
             
            )
         
     | 
| 45 | 
         | 
| 
         | 
|
| 46 | 
         
             
            if __name__ == "__main__":
         
     | 
| 47 | 
         
             
                iface.launch()
         
     |