Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
model_name = "cross-encoder/multi-nli-xlm-r-100" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
def generate_prediction(input_text): | |
input_ids = tokenizer.encode(input_text, truncation=True, padding=True, return_tensors='pt') | |
outputs = model(input_ids) | |
predicted_label = torch.argmax(outputs.logits) | |
label_map = {0: "entailment", 1: "neutral", 2: "contradiction"} | |
predicted_label_text = label_map[predicted_label.item()] | |
return predicted_label_text | |
input_text = gr.inputs.Textbox(label="Input text") | |
output_text = gr.outputs.Textbox(label="Output text") | |
gr.Interface( | |
generate_prediction, | |
inputs=input_text, | |
outputs=output_text, | |
title="Text Classifier", | |
description="A Hugging Face cross-encoder model for text classification.", | |
).launch() | |