retwpay commited on
Commit
541022c
·
verified ·
1 Parent(s): 9edf063

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -62
app.py CHANGED
@@ -1,72 +1,59 @@
 
1
  import gradio as gr
2
  import numpy as np
 
 
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
  generator = torch.Generator().manual_seed(seed)
40
 
41
- image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
44
  guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
  width=width,
47
  height=height,
48
- generator=generator,
49
  ).images[0]
50
 
51
- return image, seed
52
-
53
 
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -77,16 +64,17 @@ with gr.Blocks(css=css) as demo:
77
  container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
-
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
 
92
  seed = gr.Slider(
@@ -105,7 +93,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,42 +101,30 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
- maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
+ import PIL.Image
5
+ from PIL import Image
6
  import random
7
+ from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
8
+ from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
9
+ import cv2
10
  import torch
11
 
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
13
 
14
+ pipe = StableDiffusionXLPipeline.from_pretrained(
15
+ "votepurchase/waiNSFWIllustrious_v110",
16
+ torch_dtype=torch.float16,
17
+ )
18
 
19
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
20
+ pipe.to(device)
21
 
22
  MAX_SEED = np.iinfo(np.int32).max
23
+ MAX_IMAGE_SIZE = 1216
24
+
25
+
26
+ @spaces.GPU
27
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
28
+
 
 
 
 
 
 
 
 
 
29
  if randomize_seed:
30
  seed = random.randint(0, MAX_SEED)
31
 
32
  generator = torch.Generator().manual_seed(seed)
33
 
34
+ output_image = pipe(
35
  prompt=prompt,
36
  negative_prompt=negative_prompt,
37
  guidance_scale=guidance_scale,
38
  num_inference_steps=num_inference_steps,
39
  width=width,
40
  height=height,
41
+ generator=generator
42
  ).images[0]
43
 
44
+ return output_image
 
45
 
 
 
 
 
 
46
 
47
  css = """
48
  #col-container {
49
  margin: 0 auto;
50
+ max-width: 520px;
51
  }
52
  """
53
 
54
  with gr.Blocks(css=css) as demo:
55
+
56
  with gr.Column(elem_id="col-container"):
 
57
 
58
  with gr.Row():
59
  prompt = gr.Text(
 
64
  container=False,
65
  )
66
 
67
+ run_button = gr.Button("Run", scale=0)
68
 
69
  result = gr.Image(label="Result", show_label=False)
70
+
71
  with gr.Accordion("Advanced Settings", open=False):
72
+
73
  negative_prompt = gr.Text(
74
  label="Negative prompt",
75
  max_lines=1,
76
  placeholder="Enter a negative prompt",
77
+ value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
78
  )
79
 
80
  seed = gr.Slider(
 
93
  minimum=256,
94
  maximum=MAX_IMAGE_SIZE,
95
  step=32,
96
+ value=1024,#832,
97
  )
98
 
99
  height = gr.Slider(
 
101
  minimum=256,
102
  maximum=MAX_IMAGE_SIZE,
103
  step=32,
104
+ value=1024,#1216,
105
  )
106
 
107
  with gr.Row():
108
  guidance_scale = gr.Slider(
109
  label="Guidance scale",
110
  minimum=0.0,
111
+ maximum=20.0,
112
  step=0.1,
113
+ value=7,
114
  )
115
 
116
  num_inference_steps = gr.Slider(
117
  label="Number of inference steps",
118
  minimum=1,
119
+ maximum=28,
120
  step=1,
121
+ value=28,
122
  )
123
 
124
+ run_button.click(#lambda x: None, inputs=None, outputs=result).then(
 
 
125
  fn=infer,
126
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
127
+ outputs=[result]
 
 
 
 
 
 
 
 
 
128
  )
129
 
130
+ demo.queue().launch()