# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait from threading import Lock import umap import numpy as np from sklearn.mixture import GaussianMixture from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache from rag.utils import truncate class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1): self._max_cluster = max_cluster self._llm_model = llm_model self._embd_model = embd_model self._threshold = threshold self._prompt = prompt self._max_token = max_token def _chat(self, system, history, gen_conf): response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf) if response: return response response = self._llm_model.chat(system, history, gen_conf) if response.find("**ERROR**") >= 0: raise Exception(response) set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf) return response def _embedding_encode(self, txt): response = get_embed_cache(self._embd_model.llm_name, txt) if response: return response embds, _ = self._embd_model.encode([txt]) if len(embds) < 1 or len(embds[0]) < 1: raise Exception("Embedding error: ") embds = embds[0] set_embed_cache(self._embd_model.llm_name, txt, embds) return embds def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int): max_clusters = min(self._max_cluster, len(embeddings)) n_clusters = np.arange(1, max_clusters) bics = [] for n in n_clusters: gm = GaussianMixture(n_components=n, random_state=random_state) gm.fit(embeddings) bics.append(gm.bic(embeddings)) optimal_clusters = n_clusters[np.argmin(bics)] return optimal_clusters def __call__(self, chunks, random_state, callback=None): layers = [(0, len(chunks))] start, end = 0, len(chunks) if len(chunks) <= 1: return chunks = [(s, a) for s, a in chunks if s and len(a) > 0] def summarize(ck_idx, lock): nonlocal chunks try: texts = [chunks[i][0] for i in ck_idx] len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts)) cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) cnt = self._chat("You're a helpful assistant.", [{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}], {"temperature": 0.3, "max_tokens": self._max_token} ) cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "", cnt) logging.debug(f"SUM: {cnt}") embds, _ = self._embd_model.encode([cnt]) with lock: chunks.append((cnt, self._embedding_encode(cnt))) except Exception as e: logging.exception("summarize got exception") return e labels = [] while end - start > 1: embeddings = [embd for _, embd in chunks[start: end]] if len(embeddings) == 2: summarize([start, start + 1], Lock()) if callback: callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) labels.extend([0, 0]) layers.append((end, len(chunks))) start = end end = len(chunks) continue n_neighbors = int((len(embeddings) - 1) ** 0.8) reduced_embeddings = umap.UMAP( n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine" ).fit_transform(embeddings) n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) if n_clusters == 1: lbls = [0 for _ in range(len(reduced_embeddings))] else: gm = GaussianMixture(n_components=n_clusters, random_state=random_state) gm.fit(reduced_embeddings) probs = gm.predict_proba(reduced_embeddings) lbls = [np.where(prob > self._threshold)[0] for prob in probs] lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] lock = Lock() with ThreadPoolExecutor(max_workers=12) as executor: threads = [] for c in range(n_clusters): ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c] if not ck_idx: continue threads.append(executor.submit(summarize, ck_idx, lock)) wait(threads, return_when=ALL_COMPLETED) for th in threads: if isinstance(th.result(), Exception): raise th.result() logging.debug(str([t.result() for t in threads])) assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) labels.extend(lbls) layers.append((end, len(chunks))) if callback: callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end)) start = end end = len(chunks) return chunks