# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import os import sys import time import argparse from collections import defaultdict from api.db import LLMType from api.db.services.llm_service import LLMBundle from api.db.services.knowledgebase_service import KnowledgebaseService from api import settings from api.utils import get_uuid from rag.nlp import tokenize, search from ranx import evaluate from ranx import Qrels, Run import pandas as pd from tqdm import tqdm global max_docs max_docs = sys.maxsize class Benchmark: def __init__(self, kb_id): self.kb_id = kb_id e, self.kb = KnowledgebaseService.get_by_id(kb_id) self.similarity_threshold = self.kb.similarity_threshold self.vector_similarity_weight = self.kb.vector_similarity_weight self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language) self.tenant_id = '' self.index_name = '' self.initialized_index = False def _get_retrieval(self, qrels): # Need to wait for the ES and Infinity index to be ready time.sleep(20) run = defaultdict(dict) query_list = list(qrels.keys()) for query in query_list: ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30, 0.0, self.vector_similarity_weight) if len(ranks["chunks"]) == 0: print(f"deleted query: {query}") del qrels[query] continue for c in ranks["chunks"]: c.pop("vector", None) run[query][c["chunk_id"]] = c["similarity"] return run def embedding(self, docs): texts = [d["content_with_weight"] for d in docs] embeddings, _ = self.embd_mdl.encode(texts) assert len(docs) == len(embeddings) vector_size = 0 for i, d in enumerate(docs): v = embeddings[i] vector_size = len(v) d["q_%d_vec" % len(v)] = v return docs, vector_size def init_index(self, vector_size: int): if self.initialized_index: return if settings.docStoreConn.indexExist(self.index_name, self.kb_id): settings.docStoreConn.deleteIdx(self.index_name, self.kb_id) settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size) self.initialized_index = True def ms_marco_index(self, file_path, index_name): qrels = defaultdict(dict) texts = defaultdict(dict) docs_count = 0 docs = [] filelist = sorted(os.listdir(file_path)) for fn in filelist: if docs_count >= max_docs: break if not fn.endswith(".parquet"): continue data = pd.read_parquet(os.path.join(file_path, fn)) for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn): if docs_count >= max_docs: break query = data.iloc[i]['query'] for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']): d = { "id": get_uuid(), "kb_id": self.kb.id, "docnm_kwd": "xxxxx", "doc_id": "ksksks" } tokenize(d, text, "english") docs.append(d) texts[d["id"]] = text qrels[query][d["id"]] = int(rel) if len(docs) >= 32: docs_count += len(docs) docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs, self.index_name, self.kb_id) docs = [] if docs: docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs, self.index_name, self.kb_id) return qrels, texts def trivia_qa_index(self, file_path, index_name): qrels = defaultdict(dict) texts = defaultdict(dict) docs_count = 0 docs = [] filelist = sorted(os.listdir(file_path)) for fn in filelist: if docs_count >= max_docs: break if not fn.endswith(".parquet"): continue data = pd.read_parquet(os.path.join(file_path, fn)) for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn): if docs_count >= max_docs: break query = data.iloc[i]['question'] for rel, text in zip(data.iloc[i]["search_results"]['rank'], data.iloc[i]["search_results"]['search_context']): d = { "id": get_uuid(), "kb_id": self.kb.id, "docnm_kwd": "xxxxx", "doc_id": "ksksks" } tokenize(d, text, "english") docs.append(d) texts[d["id"]] = text qrels[query][d["id"]] = int(rel) if len(docs) >= 32: docs_count += len(docs) docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs,self.index_name) docs = [] docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs, self.index_name) return qrels, texts def miracl_index(self, file_path, corpus_path, index_name): corpus_total = {} for corpus_file in os.listdir(corpus_path): tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True) for index, i in tmp_data.iterrows(): corpus_total[i['docid']] = i['text'] topics_total = {} for topics_file in os.listdir(os.path.join(file_path, 'topics')): if 'test' in topics_file: continue tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query']) for index, i in tmp_data.iterrows(): topics_total[i['qid']] = i['query'] qrels = defaultdict(dict) texts = defaultdict(dict) docs_count = 0 docs = [] for qrels_file in os.listdir(os.path.join(file_path, 'qrels')): if 'test' in qrels_file: continue if docs_count >= max_docs: break tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t', names=['qid', 'Q0', 'docid', 'relevance']) for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file): if docs_count >= max_docs: break query = topics_total[tmp_data.iloc[i]['qid']] text = corpus_total[tmp_data.iloc[i]['docid']] rel = tmp_data.iloc[i]['relevance'] d = { "id": get_uuid(), "kb_id": self.kb.id, "docnm_kwd": "xxxxx", "doc_id": "ksksks" } tokenize(d, text, 'english') docs.append(d) texts[d["id"]] = text qrels[query][d["id"]] = int(rel) if len(docs) >= 32: docs_count += len(docs) docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs, self.index_name) docs = [] docs, vector_size = self.embedding(docs) self.init_index(vector_size) settings.docStoreConn.insert(docs, self.index_name) return qrels, texts def save_results(self, qrels, run, texts, dataset, file_path): keep_result = [] run_keys = list(run.keys()) for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"): key = run_keys[run_i] keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key], 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")}) keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10']) with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f: f.write('## Score For Every Query\n') for keep_result_i in keep_result: f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n') scores = [[i[0], i[1]] for i in keep_result_i['run'].items()] scores = sorted(scores, key=lambda kk: kk[1]) for score in scores[:10]: f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n') json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2) json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2) print(os.path.join(file_path, dataset + '_result.md'), 'Saved!') def __call__(self, dataset, file_path, miracl_corpus=''): if dataset == "ms_marco_v1.1": self.tenant_id = "benchmark_ms_marco_v11" self.index_name = search.index_name(self.tenant_id) qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1") run = self._get_retrieval(qrels) print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) self.save_results(qrels, run, texts, dataset, file_path) if dataset == "trivia_qa": self.tenant_id = "benchmark_trivia_qa" self.index_name = search.index_name(self.tenant_id) qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa") run = self._get_retrieval(qrels) print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) self.save_results(qrels, run, texts, dataset, file_path) if dataset == "miracl": for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'yo', 'zh']: if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)): print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!') continue if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')): print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!') continue if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')): print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!') continue if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)): print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!') continue self.tenant_id = "benchmark_miracl_" + lang self.index_name = search.index_name(self.tenant_id) self.initialized_index = False qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang), os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang), "benchmark_miracl_" + lang) run = self._get_retrieval(qrels) print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"])) self.save_results(qrels, run, texts, dataset, file_path) if __name__ == '__main__': print('*****************RAGFlow Benchmark*****************') parser = argparse.ArgumentParser(usage="benchmark.py [])", description='RAGFlow Benchmark') parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate') parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id') parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl') parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path') parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl') args = parser.parse_args() max_docs = args.max_docs kb_id = args.kb_id ex = Benchmark(kb_id) dataset = args.dataset dataset_path = args.dataset_path if dataset == "ms_marco_v1.1" or dataset == "trivia_qa": ex(dataset, dataset_path) elif dataset == "miracl": if len(args) < 5: print('Please input the correct parameters!') exit(1) miracl_corpus_path = args[4] ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path) else: print("Dataset: ", dataset, "not supported!")