# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from openai.lib.azure import AzureOpenAI from zhipuai import ZhipuAI import io from abc import ABC from ollama import Client from openai import OpenAI import os import json from rag.utils import num_tokens_from_string import base64 import re class Base(ABC): def __init__(self, key, model_name): pass def transcription(self, audio, **kwargs): transcription = self.client.audio.transcriptions.create( model=self.model_name, file=audio, response_format="text" ) return transcription.text.strip(), num_tokens_from_string(transcription.text.strip()) def audio2base64(self,audio): if isinstance(audio, bytes): return base64.b64encode(audio).decode("utf-8") if isinstance(audio, io.BytesIO): return base64.b64encode(audio.getvalue()).decode("utf-8") raise TypeError("The input audio file should be in binary format.") class GPTSeq2txt(Base): def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"): if not base_url: base_url = "https://api.openai.com/v1" self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name class QWenSeq2txt(Base): def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs): import dashscope dashscope.api_key = key self.model_name = model_name def transcription(self, audio, format): from http import HTTPStatus from dashscope.audio.asr import Recognition recognition = Recognition(model=self.model_name, format=format, sample_rate=16000, callback=None) result = recognition.call(audio) ans = "" if result.status_code == HTTPStatus.OK: for sentence in result.get_sentence(): ans += str(sentence + '\n') return ans, num_tokens_from_string(ans) return "**ERROR**: " + result.message, 0 class OllamaSeq2txt(Base): def __init__(self, key, model_name, lang="Chinese", **kwargs): self.client = Client(host=kwargs["base_url"]) self.model_name = model_name self.lang = lang class AzureSeq2txt(Base): def __init__(self, key, model_name, lang="Chinese", **kwargs): self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") self.model_name = model_name self.lang = lang class XinferenceSeq2txt(Base): def __init__(self, key, model_name="", base_url=""): self.client = OpenAI(api_key="xxx", base_url=base_url) self.model_name = model_name class TencentCloudSeq2txt(Base): def __init__( self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com" ): from tencentcloud.common import credential from tencentcloud.asr.v20190614 import asr_client key = json.loads(key) sid = key.get("tencent_cloud_sid", "") sk = key.get("tencent_cloud_sk", "") cred = credential.Credential(sid, sk) self.client = asr_client.AsrClient(cred, "") self.model_name = model_name def transcription(self, audio, max_retries=60, retry_interval=5): from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) from tencentcloud.asr.v20190614 import models import time b64 = self.audio2base64(audio) try: # dispatch disk req = models.CreateRecTaskRequest() params = { "EngineModelType": self.model_name, "ChannelNum": 1, "ResTextFormat": 0, "SourceType": 1, "Data": b64, } req.from_json_string(json.dumps(params)) resp = self.client.CreateRecTask(req) # loop query req = models.DescribeTaskStatusRequest() params = {"TaskId": resp.Data.TaskId} req.from_json_string(json.dumps(params)) retries = 0 while retries < max_retries: resp = self.client.DescribeTaskStatus(req) if resp.Data.StatusStr == "success": text = re.sub( r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result ).strip() return text, num_tokens_from_string(text) elif resp.Data.StatusStr == "failed": return ( "**ERROR**: Failed to retrieve speech recognition results.", 0, ) else: time.sleep(retry_interval) retries += 1 return "**ERROR**: Max retries exceeded. Task may still be processing.", 0 except TencentCloudSDKException as e: return "**ERROR**: " + str(e), 0 except Exception as e: return "**ERROR**: " + str(e), 0