# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from functools import partial import pandas as pd from api.db import LLMType from api.db.services.llm_service import LLMBundle from api.settings import retrievaler from graph.component.base import ComponentBase, ComponentParamBase class GenerateParam(ComponentParamBase): """ Define the Generate component parameters. """ def __init__(self): super().__init__() self.llm_id = "" self.prompt = "" self.max_tokens = 256 self.temperature = 0.1 self.top_p = 0.3 self.presence_penalty = 0.4 self.frequency_penalty = 0.7 self.cite = True #self.parameters = [] def check(self): self.check_decimal_float(self.temperature, "Temperature") self.check_decimal_float(self.presence_penalty, "Presence penalty") self.check_decimal_float(self.frequency_penalty, "Frequency penalty") self.check_positive_number(self.max_tokens, "Max tokens") self.check_decimal_float(self.top_p, "Top P") self.check_empty(self.llm_id, "LLM") #self.check_defined_type(self.parameters, "Parameters", ["list"]) def gen_conf(self): return { "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, } class Generate(ComponentBase): component_name = "Generate" def _run(self, history, **kwargs): chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) prompt = self._param.prompt retrieval_res = self.get_input() input = "\n- ".join(retrieval_res["content"]) kwargs["input"] = input for n, v in kwargs.items(): #prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt) prompt = re.sub(r"\{%s\}"%n, str(v), prompt) if kwargs.get("stream"): return partial(self.stream_output, chat_mdl, prompt, retrieval_res) if "empty_response" in retrieval_res.columns: return Generate.be_output(input) ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()) if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: ans, idx = retrievaler.insert_citations(ans, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()], [ck["vector"] for _,ck in retrieval_res.iterrows()], LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()), tkweight=0.7, vtweight=0.3) del retrieval_res["vector"] retrieval_res = retrieval_res.to_dict("records") df = [] for i in idx: df.append(retrieval_res[int(i)]) r = re.search(r"^((.|[\r\n])*? ##%s\$\$)"%str(i), ans) assert r, f"{i} => {ans}" df[-1]["content"] = r.group(1) ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans) if ans: df.append({"content": ans}) return pd.DataFrame(df) return Generate.be_output(ans) def stream_output(self, chat_mdl, prompt, retrieval_res): res = None if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]): res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []} yield res self.set_output(res) return answer = "" for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()): res = {"content": ans, "reference": []} answer = ans yield res if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()], [ck["vector"] for _, ck in retrieval_res.iterrows()], LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()), tkweight=0.7, vtweight=0.3) doc_ids = set([]) recall_docs = [] for i in idx: did = retrieval_res.loc[int(i), "doc_id"] if did in doc_ids: continue doc_ids.add(did) recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]}) del retrieval_res["vector"] del retrieval_res["content_ltks"] reference = { "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()], "doc_aggs": recall_docs } if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" res = {"content": answer, "reference": reference} yield res self.set_output(res)