# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import json import logging import os import hashlib import copy import re import sys from functools import partial from timeit import default_timer as timer from api.db.services.task_service import TaskService from rag.llm import EmbeddingModel, CvModel from rag.settings import cron_logger, DOC_MAXIMUM_SIZE from rag.utils import ELASTICSEARCH from rag.utils import MINIO from rag.utils import rmSpace, findMaxTm from rag.nlp import search from io import BytesIO import pandas as pd from rag.app import laws, paper, presentation, manual from api.db import LLMType, ParserType from api.db.services.document_service import DocumentService from api.db.services.llm_service import LLMBundle from api.settings import database_logger from api.utils.file_utils import get_project_base_directory BATCH_SIZE = 64 FACTORY = { ParserType.GENERAL.value: laws, ParserType.PAPER.value: paper, ParserType.PRESENTATION.value: presentation, ParserType.MANUAL.value: manual, ParserType.LAWS.value: laws, } def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."): cancel = TaskService.do_cancel(task_id) if cancel: msg = "Canceled." prog = -1 if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg d = {"progress_msg": msg} if prog is not None: d["progress"] = prog try: TaskService.update_by_id(task_id, d) except Exception as e: cron_logger.error("set_progress:({}), {}".format(task_id, str(e))) if cancel:sys.exit() """ def chuck_doc(name, binary, tenant_id, cvmdl=None): suff = os.path.split(name)[-1].lower().split(".")[-1] if suff.find("pdf") >= 0: return PDF(binary) if suff.find("doc") >= 0: return DOC(binary) if re.match(r"(xlsx|xlsm|xltx|xltm)", suff): return EXC(binary) if suff.find("ppt") >= 0: return PPT(binary) if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$", name.lower()): txt = cvmdl.describe(binary) field = TextChunker.Fields() field.text_chunks = [(txt, binary)] field.table_chunks = [] return field return TextChunker()(binary) """ def collect(comm, mod, tm): tasks = TaskService.get_tasks(tm, mod, comm) if len(tasks) == 0: return pd.DataFrame() tasks = pd.DataFrame(tasks) mtm = tasks["update_time"].max() cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm)) return tasks def build(row, cvmdl): if row["size"] > DOC_MAXIMUM_SIZE: set_progress(row["id"], -1, "File size exceeds( <= %dMb )" % (int(DOC_MAXIMUM_SIZE / 1024 / 1024))) return [] callback = partial(set_progress, row["id"], row["from_page"], row["to_page"]) chunker = FACTORY[row["parser_id"]] try: cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"])) cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"], callback) except Exception as e: if re.search("(No such file|not found)", str(e)): callback(-1, "Can not find file <%s>" % row["doc_name"]) else: callback(-1, f"Internal server error: %s" % str(e).replace("'", "")) cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) return [] callback(msg="Finished slicing files. Start to embedding the content.") docs = [] doc = { "doc_id": row["doc_id"], "kb_id": [str(row["kb_id"])] } for ck in cks: d = copy.deepcopy(doc) d.update(ck) md5 = hashlib.md5() md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")) d["_id"] = md5.hexdigest() d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] if not d.get("image"): docs.append(d) continue output_buffer = BytesIO() if isinstance(d["image"], bytes): output_buffer = BytesIO(d["image"]) else: d["image"].save(output_buffer, format='JPEG') MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) docs.append(d) return docs def init_kb(row): idxnm = search.index_name(row["tenant_id"]) if ELASTICSEARCH.indexExist(idxnm): return return ELASTICSEARCH.createIdx(idxnm, json.load( open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r"))) def embedding(docs, mdl): tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs] tk_count = 0 tts, c = mdl.encode(tts) tk_count += c cnts, c = mdl.encode(cnts) tk_count += c vects = 0.1 * tts + 0.9 * cnts assert len(vects) == len(docs) for i, d in enumerate(docs): v = vects[i].tolist() d["q_%d_vec" % len(v)] = v return tk_count def main(comm, mod): tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm") tm = findMaxTm(tm_fnm) rows = collect(comm, mod, tm) if len(rows) == 0: return tmf = open(tm_fnm, "a+") for _, r in rows.iterrows(): try: embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING) cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT) # TODO: sequence2text model except Exception as e: set_progress(r["id"], -1, str(e)) continue callback = partial(set_progress, r["id"], r["from_page"], r["to_page"]) st_tm = timer() cks = build(r, cv_mdl) if not cks: tmf.write(str(r["update_time"]) + "\n") continue # TODO: exception handler ## set_progress(r["did"], -1, "ERROR: ") try: tk_count = embedding(cks, embd_mdl) except Exception as e: callback(-1, "Embedding error:{}".format(str(e))) cron_logger.error(str(e)) continue callback(msg="Finished embedding! Start to build index!") init_kb(r) chunk_count = len(set([c["_id"] for c in cks])) callback(1., "Done!") es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"])) if es_r: callback(-1, "Index failure!") cron_logger.error(str(es_r)) else: DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0) cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks))) tmf.write(str(r["update_time"]) + "\n") tmf.close() if __name__ == "__main__": peewee_logger = logging.getLogger('peewee') peewee_logger.propagate = False peewee_logger.addHandler(database_logger.handlers[0]) peewee_logger.setLevel(database_logger.level) from mpi4py import MPI comm = MPI.COMM_WORLD main(comm.Get_size(), comm.Get_rank())