# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from openai.lib.azure import AzureOpenAI from zhipuai import ZhipuAI from dashscope import Generation from abc import ABC from openai import OpenAI import openai from ollama import Client from rag.nlp import is_english from rag.utils import num_tokens_from_string from groq import Groq import os import json import requests import asyncio class Base(ABC): def __init__(self, key, model_name, base_url): self.client = OpenAI(api_key=key, base_url=base_url) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) try: response = self.client.chat.completions.create( model=self.model_name, messages=history, **gen_conf) ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response.usage.total_tokens except openai.APIError as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) ans = "" total_tokens = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, stream=True, **gen_conf) for resp in response: if not resp.choices:continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" ans += resp.choices[0].delta.content total_tokens = ( ( total_tokens + num_tokens_from_string(resp.choices[0].delta.content) ) if not hasattr(resp, "usage") or not resp.usage else resp.usage.get("total_tokens",total_tokens) ) if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class GptTurbo(Base): def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): if not base_url: base_url="https://api.openai.com/v1" super().__init__(key, model_name, base_url) class MoonshotChat(Base): def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): if not base_url: base_url="https://api.moonshot.cn/v1" super().__init__(key, model_name, base_url) class XinferenceChat(Base): def __init__(self, key=None, model_name="", base_url=""): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") super().__init__(key, model_name, base_url) class DeepSeekChat(Base): def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"): if not base_url: base_url="https://api.deepseek.com/v1" super().__init__(key, model_name, base_url) class AzureChat(Base): def __init__(self, key, model_name, **kwargs): self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") self.model_name = model_name class BaiChuanChat(Base): def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"): if not base_url: base_url = "https://api.baichuan-ai.com/v1" super().__init__(key, model_name, base_url) @staticmethod def _format_params(params): return { "temperature": params.get("temperature", 0.3), "max_tokens": params.get("max_tokens", 2048), "top_p": params.get("top_p", 0.85), } def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) try: response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={ "tools": [{ "type": "web_search", "web_search": { "enable": True, "search_mode": "performance_first" } }] }, **self._format_params(gen_conf)) ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response.usage.total_tokens except openai.APIError as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) ans = "" total_tokens = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, extra_body={ "tools": [{ "type": "web_search", "web_search": { "enable": True, "search_mode": "performance_first" } }] }, stream=True, **self._format_params(gen_conf)) for resp in response: if not resp.choices:continue if not resp.choices[0].delta.content: resp.choices[0].delta.content = "" ans += resp.choices[0].delta.content total_tokens = ( ( total_tokens + num_tokens_from_string(resp.choices[0].delta.content) ) if not hasattr(resp, "usage") else resp.usage["total_tokens"] ) if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class QWenChat(Base): def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): import dashscope dashscope.api_key = key self.model_name = model_name def chat(self, system, history, gen_conf): from http import HTTPStatus if system: history.insert(0, {"role": "system", "content": system}) response = Generation.call( self.model_name, messages=history, result_format='message', **gen_conf ) ans = "" tk_count = 0 if response.status_code == HTTPStatus.OK: ans += response.output.choices[0]['message']['content'] tk_count += response.usage.total_tokens if response.output.choices[0].get("finish_reason", "") == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, tk_count return "**ERROR**: " + response.message, tk_count def chat_streamly(self, system, history, gen_conf): from http import HTTPStatus if system: history.insert(0, {"role": "system", "content": system}) ans = "" tk_count = 0 try: response = Generation.call( self.model_name, messages=history, result_format='message', stream=True, **gen_conf ) for resp in response: if resp.status_code == HTTPStatus.OK: ans = resp.output.choices[0]['message']['content'] tk_count = resp.usage.total_tokens if resp.output.choices[0].get("finish_reason", "") == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans else: yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**" except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count class ZhipuChat(Base): def __init__(self, key, model_name="glm-3-turbo", **kwargs): self.client = ZhipuAI(api_key=key) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) try: if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] response = self.client.chat.completions.create( model=self.model_name, messages=history, **gen_conf ) ans = response.choices[0].message.content.strip() if response.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response.usage.total_tokens except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] ans = "" tk_count = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, stream=True, **gen_conf ) for resp in response: if not resp.choices[0].delta.content:continue delta = resp.choices[0].delta.content ans += delta if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" tk_count = resp.usage.total_tokens if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield tk_count class OllamaChat(Base): def __init__(self, key, model_name, **kwargs): self.client = Client(host=kwargs["base_url"]) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) try: options = {} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] response = self.client.chat( model=self.model_name, messages=history, options=options, keep_alive=-1 ) ans = response["message"]["content"].strip() return ans, response["eval_count"] + response.get("prompt_eval_count", 0) except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) options = {} if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] ans = "" try: response = self.client.chat( model=self.model_name, messages=history, stream=True, options=options, keep_alive=-1 ) for resp in response: if resp["done"]: yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) ans += resp["message"]["content"] yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield 0 class LocalAIChat(Base): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="empty", base_url=base_url) self.model_name = model_name.split("___")[0] class LocalLLM(Base): class RPCProxy: def __init__(self, host, port): self.host = host self.port = int(port) self.__conn() def __conn(self): from multiprocessing.connection import Client self._connection = Client( (self.host, self.port), authkey=b"infiniflow-token4kevinhu" ) def __getattr__(self, name): import pickle def do_rpc(*args, **kwargs): for _ in range(3): try: self._connection.send(pickle.dumps((name, args, kwargs))) return pickle.loads(self._connection.recv()) except Exception as e: self.__conn() raise Exception("RPC connection lost!") return do_rpc def __init__(self, key, model_name): from jina import Client self.client = Client(port=12345, protocol="grpc", asyncio=True) def _prepare_prompt(self, system, history, gen_conf): from rag.svr.jina_server import Prompt,Generation if system: history.insert(0, {"role": "system", "content": system}) if "max_tokens" in gen_conf: gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") return Prompt(message=history, gen_conf=gen_conf) def _stream_response(self, endpoint, prompt): from rag.svr.jina_server import Prompt,Generation answer = "" try: res = self.client.stream_doc( on=endpoint, inputs=prompt, return_type=Generation ) loop = asyncio.get_event_loop() try: while True: answer = loop.run_until_complete(res.__anext__()).text yield answer except StopAsyncIteration: pass except Exception as e: yield answer + "\n**ERROR**: " + str(e) yield num_tokens_from_string(answer) def chat(self, system, history, gen_conf): prompt = self._prepare_prompt(system, history, gen_conf) chat_gen = self._stream_response("/chat", prompt) ans = next(chat_gen) total_tokens = next(chat_gen) return ans, total_tokens def chat_streamly(self, system, history, gen_conf): prompt = self._prepare_prompt(system, history, gen_conf) return self._stream_response("/stream", prompt) class VolcEngineChat(Base): def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'): """ Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use model_name is for display only """ base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3' ark_api_key = json.loads(key).get('ark_api_key', '') model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '') super().__init__(ark_api_key, model_name, base_url) class MiniMaxChat(Base): def __init__( self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", ): if not base_url: base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" self.base_url = base_url self.model_name = model_name self.api_key = key def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps( {"model": self.model_name, "messages": history, **gen_conf} ) try: response = requests.request( "POST", url=self.base_url, headers=headers, data=payload ) response = response.json() ans = response["choices"][0]["message"]["content"].strip() if response["choices"][0]["finish_reason"] == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response["usage"]["total_tokens"] except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) ans = "" total_tokens = 0 try: headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } payload = json.dumps( { "model": self.model_name, "messages": history, "stream": True, **gen_conf, } ) response = requests.request( "POST", url=self.base_url, headers=headers, data=payload, ) for resp in response.text.split("\n\n")[:-1]: resp = json.loads(resp[6:]) text = "" if "choices" in resp and "delta" in resp["choices"][0]: text = resp["choices"][0]["delta"]["content"] ans += text total_tokens = ( total_tokens + num_tokens_from_string(text) if "usage" not in resp else resp["usage"]["total_tokens"] ) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class MistralChat(Base): def __init__(self, key, model_name, base_url=None): from mistralai.client import MistralClient self.client = MistralClient(api_key=key) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] try: response = self.client.chat( model=self.model_name, messages=history, **gen_conf) ans = response.choices[0].message.content if response.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response.usage.total_tokens except openai.APIError as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: response = self.client.chat_stream( model=self.model_name, messages=history, **gen_conf) for resp in response: if not resp.choices or not resp.choices[0].delta.content:continue ans += resp.choices[0].delta.content total_tokens += 1 if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans except openai.APIError as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class BedrockChat(Base): def __init__(self, key, model_name, **kwargs): import boto3 self.bedrock_ak = json.loads(key).get('bedrock_ak', '') self.bedrock_sk = json.loads(key).get('bedrock_sk', '') self.bedrock_region = json.loads(key).get('bedrock_region', '') self.model_name = model_name self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) def chat(self, system, history, gen_conf): from botocore.exceptions import ClientError for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] if "max_tokens" in gen_conf: gen_conf["maxTokens"] = gen_conf["max_tokens"] _ = gen_conf.pop("max_tokens") if "top_p" in gen_conf: gen_conf["topP"] = gen_conf["top_p"] _ = gen_conf.pop("top_p") for item in history: if not isinstance(item["content"],list) and not isinstance(item["content"],tuple): item["content"] = [{"text":item["content"]}] try: # Send the message to the model, using a basic inference configuration. response = self.client.converse( modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": system}] if system else None, ) # Extract and print the response text. ans = response["output"]["message"]["content"][0]["text"] return ans, num_tokens_from_string(ans) except (ClientError, Exception) as e: return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 def chat_streamly(self, system, history, gen_conf): from botocore.exceptions import ClientError for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] if "max_tokens" in gen_conf: gen_conf["maxTokens"] = gen_conf["max_tokens"] _ = gen_conf.pop("max_tokens") if "top_p" in gen_conf: gen_conf["topP"] = gen_conf["top_p"] _ = gen_conf.pop("top_p") for item in history: if not isinstance(item["content"],list) and not isinstance(item["content"],tuple): item["content"] = [{"text":item["content"]}] if self.model_name.split('.')[0] == 'ai21': try: response = self.client.converse( modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": system}] if system else None, ) ans = response["output"]["message"]["content"][0]["text"] return ans, num_tokens_from_string(ans) except (ClientError, Exception) as e: return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 ans = "" try: # Send the message to the model, using a basic inference configuration. streaming_response = self.client.converse_stream( modelId=self.model_name, messages=history, inferenceConfig=gen_conf ) # Extract and print the streamed response text in real-time. for resp in streaming_response["stream"]: if "contentBlockDelta" in resp: ans += resp["contentBlockDelta"]["delta"]["text"] yield ans except (ClientError, Exception) as e: yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" yield num_tokens_from_string(ans) class GeminiChat(Base): def __init__(self, key, model_name,base_url=None): from google.generativeai import client,GenerativeModel client.configure(api_key=key) _client = client.get_default_generative_client() self.model_name = 'models/' + model_name self.model = GenerativeModel(model_name=self.model_name) self.model._client = _client def chat(self,system,history,gen_conf): from google.generativeai.types import content_types if system: self.model._system_instruction = content_types.to_content(system) if 'max_tokens' in gen_conf: gen_conf['max_output_tokens'] = gen_conf['max_tokens'] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if 'role' in item and item['role'] == 'assistant': item['role'] = 'model' if 'content' in item : item['parts'] = item.pop('content') try: response = self.model.generate_content( history, generation_config=gen_conf) ans = response.text return ans, response.usage_metadata.total_token_count except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): from google.generativeai.types import content_types if system: self.model._system_instruction = content_types.to_content(system) if 'max_tokens' in gen_conf: gen_conf['max_output_tokens'] = gen_conf['max_tokens'] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if 'role' in item and item['role'] == 'assistant': item['role'] = 'model' if 'content' in item : item['parts'] = item.pop('content') ans = "" try: response = self.model.generate_content( history, generation_config=gen_conf,stream=True) for resp in response: ans += resp.text yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield response._chunks[-1].usage_metadata.total_token_count class GroqChat: def __init__(self, key, model_name,base_url=''): self.client = Groq(api_key=key) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" try: response = self.client.chat.completions.create( model=self.model_name, messages=history, **gen_conf ) ans = response.choices[0].message.content if response.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" return ans, response.usage.total_tokens except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_tokens"]: del gen_conf[k] ans = "" total_tokens = 0 try: response = self.client.chat.completions.create( model=self.model_name, messages=history, stream=True, **gen_conf ) for resp in response: if not resp.choices or not resp.choices[0].delta.content: continue ans += resp.choices[0].delta.content total_tokens += 1 if resp.choices[0].finish_reason == "length": ans += "...\nFor the content length reason, it stopped, continue?" if is_english( [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens ## openrouter class OpenRouterChat(Base): def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"): if not base_url: base_url = "https://openrouter.ai/api/v1" super().__init__(key, model_name, base_url) class StepFunChat(Base): def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"): if not base_url: base_url = "https://api.stepfun.com/v1" super().__init__(key, model_name, base_url) class NvidiaChat(Base): def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"): if not base_url: base_url = "https://integrate.api.nvidia.com/v1" super().__init__(key, model_name, base_url) class LmStudioChat(Base): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("Local llm url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") self.client = OpenAI(api_key="lm-studio", base_url=base_url) self.model_name = model_name class OpenAI_APIChat(Base): def __init__(self, key, model_name, base_url): if not base_url: raise ValueError("url cannot be None") if base_url.split("/")[-1] != "v1": base_url = os.path.join(base_url, "v1") model_name = model_name.split("___")[0] super().__init__(key, model_name, base_url) class CoHereChat(Base): def __init__(self, key, model_name, base_url=""): from cohere import Client self.client = Client(api_key=key) self.model_name = model_name def chat(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "top_p" in gen_conf: gen_conf["p"] = gen_conf.pop("top_p") if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: gen_conf.pop("presence_penalty") for item in history: if "role" in item and item["role"] == "user": item["role"] = "USER" if "role" in item and item["role"] == "assistant": item["role"] = "CHATBOT" if "content" in item: item["message"] = item.pop("content") mes = history.pop()["message"] ans = "" try: response = self.client.chat( model=self.model_name, chat_history=history, message=mes, **gen_conf ) ans = response.text if response.finish_reason == "MAX_TOKENS": ans += ( "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" ) return ( ans, response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, ) except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: history.insert(0, {"role": "system", "content": system}) if "top_p" in gen_conf: gen_conf["p"] = gen_conf.pop("top_p") if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: gen_conf.pop("presence_penalty") for item in history: if "role" in item and item["role"] == "user": item["role"] = "USER" if "role" in item and item["role"] == "assistant": item["role"] = "CHATBOT" if "content" in item: item["message"] = item.pop("content") mes = history.pop()["message"] ans = "" total_tokens = 0 try: response = self.client.chat_stream( model=self.model_name, chat_history=history, message=mes, **gen_conf ) for resp in response: if resp.event_type == "text-generation": ans += resp.text total_tokens += num_tokens_from_string(resp.text) elif resp.event_type == "stream-end": if resp.finish_reason == "MAX_TOKENS": ans += ( "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" ) yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class LeptonAIChat(Base): def __init__(self, key, model_name, base_url=None): if not base_url: base_url = os.path.join("https://"+model_name+".lepton.run","api","v1") super().__init__(key, model_name, base_url) class TogetherAIChat(Base): def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"): if not base_url: base_url = "https://api.together.xyz/v1" super().__init__(key, model_name, base_url) class PerfXCloudChat(Base): def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"): if not base_url: base_url = "https://cloud.perfxlab.cn/v1" super().__init__(key, model_name, base_url) class UpstageChat(Base): def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"): if not base_url: base_url = "https://api.upstage.ai/v1/solar" super().__init__(key, model_name, base_url) class NovitaAIChat(Base): def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"): if not base_url: base_url = "https://api.novita.ai/v3/openai" super().__init__(key, model_name, base_url) class SILICONFLOWChat(Base): def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"): if not base_url: base_url = "https://api.siliconflow.cn/v1" super().__init__(key, model_name, base_url) class YiChat(Base): def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"): if not base_url: base_url = "https://api.lingyiwanwu.com/v1" super().__init__(key, model_name, base_url) class ReplicateChat(Base): def __init__(self, key, model_name, base_url=None): from replicate.client import Client self.model_name = model_name self.client = Client(api_token=key) self.system = "" def chat(self, system, history, gen_conf): if "max_tokens" in gen_conf: gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") if system: self.system = system prompt = "\n".join( [item["role"] + ":" + item["content"] for item in history[-5:]] ) ans = "" try: response = self.client.run( self.model_name, input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, ) ans = "".join(response) return ans, num_tokens_from_string(ans) except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if "max_tokens" in gen_conf: gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") if system: self.system = system prompt = "\n".join( [item["role"] + ":" + item["content"] for item in history[-5:]] ) ans = "" try: response = self.client.run( self.model_name, input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, ) for resp in response: ans += resp yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield num_tokens_from_string(ans) class HunyuanChat(Base): def __init__(self, key, model_name, base_url=None): from tencentcloud.common import credential from tencentcloud.hunyuan.v20230901 import hunyuan_client key = json.loads(key) sid = key.get("hunyuan_sid", "") sk = key.get("hunyuan_sk", "") cred = credential.Credential(sid, sk) self.model_name = model_name self.client = hunyuan_client.HunyuanClient(cred, "") def chat(self, system, history, gen_conf): from tencentcloud.hunyuan.v20230901 import models from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) _gen_conf = {} _history = [{k.capitalize(): v for k, v in item.items() } for item in history] if system: _history.insert(0, {"Role": "system", "Content": system}) if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] req = models.ChatCompletionsRequest() params = {"Model": self.model_name, "Messages": _history, **_gen_conf} req.from_json_string(json.dumps(params)) ans = "" try: response = self.client.ChatCompletions(req) ans = response.Choices[0].Message.Content return ans, response.Usage.TotalTokens except TencentCloudSDKException as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): from tencentcloud.hunyuan.v20230901 import models from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( TencentCloudSDKException, ) _gen_conf = {} _history = [{k.capitalize(): v for k, v in item.items() } for item in history] if system: _history.insert(0, {"Role": "system", "Content": system}) if "temperature" in gen_conf: _gen_conf["Temperature"] = gen_conf["temperature"] if "top_p" in gen_conf: _gen_conf["TopP"] = gen_conf["top_p"] req = models.ChatCompletionsRequest() params = { "Model": self.model_name, "Messages": _history, "Stream": True, **_gen_conf, } req.from_json_string(json.dumps(params)) ans = "" total_tokens = 0 try: response = self.client.ChatCompletions(req) for resp in response: resp = json.loads(resp["data"]) if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: continue ans += resp["Choices"][0]["Delta"]["Content"] total_tokens += 1 yield ans except TencentCloudSDKException as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class SparkChat(Base): def __init__( self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1" ): if not base_url: base_url = "https://spark-api-open.xf-yun.com/v1" model2version = { "Spark-Max": "generalv3.5", "Spark-Lite": "general", "Spark-Pro": "generalv3", "Spark-Pro-128K": "pro-128k", "Spark-4.0-Ultra": "4.0Ultra", } model_version = model2version[model_name] super().__init__(key, model_version, base_url) class BaiduYiyanChat(Base): def __init__(self, key, model_name, base_url=None): import qianfan key = json.loads(key) ak = key.get("yiyan_ak","") sk = key.get("yiyan_sk","") self.client = qianfan.ChatCompletion(ak=ak,sk=sk) self.model_name = model_name.lower() self.system = "" def chat(self, system, history, gen_conf): if system: self.system = system gen_conf["penalty_score"] = ( (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2 ) + 1 if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] ans = "" try: response = self.client.do( model=self.model_name, messages=history, system=self.system, **gen_conf ).body ans = response['result'] return ans, response["usage"]["total_tokens"] except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: self.system = system gen_conf["penalty_score"] = ( (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2 ) + 1 if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] ans = "" total_tokens = 0 try: response = self.client.do( model=self.model_name, messages=history, system=self.system, stream=True, **gen_conf ) for resp in response: resp = resp.body ans += resp['result'] total_tokens = resp["usage"]["total_tokens"] yield ans except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 yield total_tokens class AnthropicChat(Base): def __init__(self, key, model_name, base_url=None): import anthropic self.client = anthropic.Anthropic(api_key=key) self.model_name = model_name self.system = "" def chat(self, system, history, gen_conf): if system: self.system = system if "max_tokens" not in gen_conf: gen_conf["max_tokens"] = 4096 try: response = self.client.messages.create( model=self.model_name, messages=history, system=self.system, stream=False, **gen_conf, ).json() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += ( "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" ) return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: self.system = system if "max_tokens" not in gen_conf: gen_conf["max_tokens"] = 4096 ans = "" total_tokens = 0 try: response = self.client.messages.create( model=self.model_name, messages=history, system=self.system, stream=True, **gen_conf, ) for res in response.iter_lines(): res = res.decode("utf-8") if "content_block_delta" in res and "data" in res: text = json.loads(res[6:])["delta"]["text"] ans += text total_tokens += num_tokens_from_string(text) except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens class GoogleChat(Base): def __init__(self, key, model_name, base_url=None): from google.oauth2 import service_account import base64 key = json.load(key) access_token = json.loads( base64.b64decode(key.get("google_service_account_key", "")) ) project_id = key.get("google_project_id", "") region = key.get("google_region", "") scopes = ["https://www.googleapis.com/auth/cloud-platform"] self.model_name = model_name self.system = "" if "claude" in self.model_name: from anthropic import AnthropicVertex from google.auth.transport.requests import Request if access_token: credits = service_account.Credentials.from_service_account_info( access_token, scopes=scopes ) request = Request() credits.refresh(request) token = credits.token self.client = AnthropicVertex( region=region, project_id=project_id, access_token=token ) else: self.client = AnthropicVertex(region=region, project_id=project_id) else: from google.cloud import aiplatform import vertexai.generative_models as glm if access_token: credits = service_account.Credentials.from_service_account_info( access_token ) aiplatform.init( credentials=credits, project=project_id, location=region ) else: aiplatform.init(project=project_id, location=region) self.client = glm.GenerativeModel(model_name=self.model_name) def chat(self, system, history, gen_conf): if system: self.system = system if "claude" in self.model_name: if "max_tokens" not in gen_conf: gen_conf["max_tokens"] = 4096 try: response = self.client.messages.create( model=self.model_name, messages=history, system=self.system, stream=False, **gen_conf, ).json() ans = response["content"][0]["text"] if response["stop_reason"] == "max_tokens": ans += ( "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?" ) return ( ans, response["usage"]["input_tokens"] + response["usage"]["output_tokens"], ) except Exception as e: return ans + "\n**ERROR**: " + str(e), 0 else: self.client._system_instruction = self.system if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") try: response = self.client.generate_content( history, generation_config=gen_conf ) ans = response.text return ans, response.usage_metadata.total_token_count except Exception as e: return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf): if system: self.system = system if "claude" in self.model_name: if "max_tokens" not in gen_conf: gen_conf["max_tokens"] = 4096 ans = "" total_tokens = 0 try: response = self.client.messages.create( model=self.model_name, messages=history, system=self.system, stream=True, **gen_conf, ) for res in response.iter_lines(): res = res.decode("utf-8") if "content_block_delta" in res and "data" in res: text = json.loads(res[6:])["delta"]["text"] ans += text total_tokens += num_tokens_from_string(text) except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield total_tokens else: self.client._system_instruction = self.system if "max_tokens" in gen_conf: gen_conf["max_output_tokens"] = gen_conf["max_tokens"] for k in list(gen_conf.keys()): if k not in ["temperature", "top_p", "max_output_tokens"]: del gen_conf[k] for item in history: if "role" in item and item["role"] == "assistant": item["role"] = "model" if "content" in item: item["parts"] = item.pop("content") ans = "" try: response = self.model.generate_content( history, generation_config=gen_conf, stream=True ) for resp in response: ans += resp.text yield ans except Exception as e: yield ans + "\n**ERROR**: " + str(e) yield response._chunks[-1].usage_metadata.total_token_count