# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flask import request from api.db import StatusEnum from api.db.db_models import TenantLLM from api.db.services.dialog_service import DialogService from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import LLMService, TenantLLMService from api.db.services.user_service import TenantService from api.settings import RetCode from api.utils import get_uuid from api.utils.api_utils import get_data_error_result, token_required from api.utils.api_utils import get_json_result @manager.route('/save', methods=['POST']) @token_required def save(tenant_id): req = request.json # dataset if req.get("knowledgebases") == []: return get_data_error_result(retmsg="knowledgebases can not be empty list") kb_list = [] if req.get("knowledgebases"): for kb in req.get("knowledgebases"): if not kb["id"]: return get_data_error_result(retmsg="knowledgebase needs id") if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id): return get_data_error_result(retmsg="you do not own the knowledgebase") # if not DocumentService.query(kb_id=kb["id"]): # return get_data_error_result(retmsg="There is a invalid knowledgebase") kb_list.append(kb["id"]) req["kb_ids"] = kb_list # llm llm = req.get("llm") if llm: if "model_name" in llm: req["llm_id"] = llm.pop("model_name") req["llm_setting"] = req.pop("llm") e, tenant = TenantService.get_by_id(tenant_id) if not e: return get_data_error_result(retmsg="Tenant not found!") # prompt prompt = req.get("prompt") key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"] if prompt: for new_key, old_key in key_mapping.items(): if old_key in prompt: prompt[new_key] = prompt.pop(old_key) for key in key_list: if key in prompt: req[key] = prompt.pop(key) req["prompt_config"] = req.pop("prompt") # create if "id" not in req: # dataset if not kb_list: return get_data_error_result(retmsg="knowledgebases are required!") # init req["id"] = get_uuid() req["description"] = req.get("description", "A helpful Assistant") req["icon"] = req.get("avatar", "") req["top_n"] = req.get("top_n", 6) req["top_k"] = req.get("top_k", 1024) req["rerank_id"] = req.get("rerank_id", "") if req.get("llm_id"): if not TenantLLMService.query(llm_name=req["llm_id"]): return get_data_error_result(retmsg="the model_name does not exist.") else: req["llm_id"] = tenant.llm_id if not req.get("name"): return get_data_error_result(retmsg="name is required.") if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value): return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.") # tenant_id if req.get("tenant_id"): return get_data_error_result(retmsg="tenant_id must not be provided.") req["tenant_id"] = tenant_id # prompt more parameter default_prompt = { "system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。 以下是知识库: {knowledge} 以上是知识库。""", "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?", "parameters": [ {"key": "knowledge", "optional": False} ], "empty_response": "Sorry! 知识库中未找到相关内容!" } key_list_2 = ["system", "prologue", "parameters", "empty_response"] if "prompt_config" not in req: req['prompt_config'] = {} for key in key_list_2: temp = req['prompt_config'].get(key) if not temp: req['prompt_config'][key] = default_prompt[key] for p in req['prompt_config']["parameters"]: if p["optional"]: continue if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0: return get_data_error_result( retmsg="Parameter '{}' is not used".format(p["key"])) # save if not DialogService.save(**req): return get_data_error_result(retmsg="Fail to new an assistant!") # response e, res = DialogService.get_by_id(req["id"]) if not e: return get_data_error_result(retmsg="Fail to new an assistant!") res = res.to_json() renamed_dict = {} for key, value in res["prompt_config"].items(): new_key = key_mapping.get(key, key) renamed_dict[new_key] = value res["prompt"] = renamed_dict del res["prompt_config"] new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res['rerank_id']} res["prompt"].update(new_dict) for key in key_list: del res[key] res["llm"] = res.pop("llm_setting") res["llm"]["model_name"] = res.pop("llm_id") del res["kb_ids"] res["knowledgebases"] = req["knowledgebases"] res["avatar"] = res.pop("icon") return get_json_result(data=res) else: # authorization if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value): return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR) # prompt if not req["id"]: return get_data_error_result(retmsg="id can not be empty") e, res = DialogService.get_by_id(req["id"]) res = res.to_json() if "llm_id" in req: if not TenantLLMService.query(llm_name=req["llm_id"]): return get_data_error_result(retmsg="the model_name does not exist.") if "name" in req: if not req.get("name"): return get_data_error_result(retmsg="name is not empty.") if req["name"].lower() != res["name"].lower() \ and len( DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0: return get_data_error_result(retmsg="Duplicated assistant name in updating dataset.") if "prompt_config" in req: res["prompt_config"].update(req["prompt_config"]) for p in res["prompt_config"]["parameters"]: if p["optional"]: continue if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0: return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"])) if "llm_setting" in req: res["llm_setting"].update(req["llm_setting"]) req["prompt_config"] = res["prompt_config"] req["llm_setting"] = res["llm_setting"] # avatar if "avatar" in req: req["icon"] = req.pop("avatar") assistant_id = req.pop("id") if "knowledgebases" in req: req.pop("knowledgebases") if not DialogService.update_by_id(assistant_id, req): return get_data_error_result(retmsg="Assistant not found!") return get_json_result(data=True) @manager.route('/delete', methods=['DELETE']) @token_required def delete(tenant_id): req = request.args if "id" not in req: return get_data_error_result(retmsg="id is required") id = req['id'] if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value): return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR) temp_dict = {"status": StatusEnum.INVALID.value} DialogService.update_by_id(req["id"], temp_dict) return get_json_result(data=True) @manager.route('/get', methods=['GET']) @token_required def get(tenant_id): req = request.args if "id" in req: id = req["id"] ass = DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value) if not ass: return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR) if "name" in req: name = req["name"] if ass[0].name != name: return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR) res = ass[0].to_json() else: if "name" in req: name = req["name"] ass = DialogService.query(name=name, tenant_id=tenant_id, status=StatusEnum.VALID.value) if not ass: return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR) res = ass[0].to_json() else: return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.") renamed_dict = {} key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"] for key, value in res["prompt_config"].items(): new_key = key_mapping.get(key, key) renamed_dict[new_key] = value res["prompt"] = renamed_dict del res["prompt_config"] new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res['rerank_id']} res["prompt"].update(new_dict) for key in key_list: del res[key] res["llm"] = res.pop("llm_setting") res["llm"]["model_name"] = res.pop("llm_id") kb_list = [] for kb_id in res["kb_ids"]: kb = KnowledgebaseService.query(id=kb_id) kb_list.append(kb[0].to_json()) del res["kb_ids"] res["knowledgebases"] = kb_list res["avatar"] = res.pop("icon") return get_json_result(data=res) @manager.route('/list', methods=['GET']) @token_required def list_assistants(tenant_id): assts = DialogService.query( tenant_id=tenant_id, status=StatusEnum.VALID.value, reverse=True, order_by=DialogService.model.create_time) assts = [d.to_dict() for d in assts] list_assts = [] renamed_dict = {} key_mapping = {"parameters": "variables", "prologue": "opener", "quote": "show_quote", "system": "prompt", "rerank_id": "rerank_model", "vector_similarity_weight": "keywords_similarity_weight"} key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"] for res in assts: for key, value in res["prompt_config"].items(): new_key = key_mapping.get(key, key) renamed_dict[new_key] = value res["prompt"] = renamed_dict del res["prompt_config"] new_dict = {"similarity_threshold": res["similarity_threshold"], "keywords_similarity_weight": res["vector_similarity_weight"], "top_n": res["top_n"], "rerank_model": res['rerank_id']} res["prompt"].update(new_dict) for key in key_list: del res[key] res["llm"] = res.pop("llm_setting") res["llm"]["model_name"] = res.pop("llm_id") kb_list = [] for kb_id in res["kb_ids"]: kb = KnowledgebaseService.query(id=kb_id) kb_list.append(kb[0].to_json()) del res["kb_ids"] res["knowledgebases"] = kb_list res["avatar"] = res.pop("icon") list_assts.append(res) return get_json_result(data=list_assts)