# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import json import re from rag.utils.doc_store_conn import MatchTextExpr from rag.nlp import rag_tokenizer, term_weight, synonym class FulltextQueryer: def __init__(self): self.tw = term_weight.Dealer() self.syn = synonym.Dealer() self.query_fields = [ "title_tks^10", "title_sm_tks^5", "important_kwd^30", "important_tks^20", "question_tks^20", "content_ltks^2", "content_sm_ltks", ] @staticmethod def subSpecialChar(line): return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip() @staticmethod def isChinese(line): arr = re.split(r"[ \t]+", line) if len(arr) <= 3: return True e = 0 for t in arr: if not re.match(r"[a-zA-Z]+$", t): e += 1 return e * 1.0 / len(arr) >= 0.7 @staticmethod def rmWWW(txt): patts = [ ( r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*", "", ), (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "), ( r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of|to|or|and|if) ", " ") ] for r, p in patts: txt = re.sub(r, p, txt, flags=re.IGNORECASE) return txt def question(self, txt, tbl="qa", min_match: float = 0.6): txt = re.sub( r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+", " ", rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())), ).strip() txt = FulltextQueryer.rmWWW(txt) if not self.isChinese(txt): txt = FulltextQueryer.rmWWW(txt) tks = rag_tokenizer.tokenize(txt).split() keywords = [t for t in tks if t] tks_w = self.tw.weights(tks, preprocess=False) tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w] tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk] tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk] tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()] syns = [] for tk, w in tks_w: syn = self.syn.lookup(tk) syn = rag_tokenizer.tokenize(" ".join(syn)).split() keywords.extend(syn) syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn if s.strip()] syns.append(" ".join(syn)) q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if tk and not re.match(r"[.^+\(\)-]", tk)] for i in range(1, len(tks_w)): left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip() if not left or not right: continue q.append( '"%s %s"^%.4f' % ( tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1]) * 2, ) ) if not q: q.append(txt) query = " ".join(q) return MatchTextExpr( self.query_fields, query, 100 ), keywords def need_fine_grained_tokenize(tk): if len(tk) < 3: return False if re.match(r"[0-9a-z\.\+#_\*-]+$", tk): return False return True txt = FulltextQueryer.rmWWW(txt) qs, keywords = [], [] for tt in self.tw.split(txt)[:256]: # .split(): if not tt: continue keywords.append(tt) twts = self.tw.weights([tt]) syns = self.syn.lookup(tt) if syns and len(keywords) < 32: keywords.extend(syns) logging.debug(json.dumps(twts, ensure_ascii=False)) tms = [] for tk, w in sorted(twts, key=lambda x: x[1] * -1): sm = ( rag_tokenizer.fine_grained_tokenize(tk).split() if need_fine_grained_tokenize(tk) else [] ) sm = [ re.sub( r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+", "", m, ) for m in sm ] sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1] sm = [m for m in sm if len(m) > 1] if len(keywords) < 32: keywords.append(re.sub(r"[ \\\"']+", "", tk)) keywords.extend(sm) tk_syns = self.syn.lookup(tk) tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns] if len(keywords) < 32: keywords.extend([s for s in tk_syns if s]) tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s] tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns] if len(keywords) >= 32: break tk = FulltextQueryer.subSpecialChar(tk) if tk.find(" ") > 0: tk = '"%s"' % tk if tk_syns: tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns) if sm: tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm)) if tk.strip(): tms.append((tk, w)) tms = " ".join([f"({t})^{w}" for t, w in tms]) if len(twts) > 1: tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt) syns = " OR ".join( [ '"%s"' % rag_tokenizer.tokenize(FulltextQueryer.subSpecialChar(s)) for s in syns ] ) if syns: tms = f"({tms})^5 OR ({syns})^0.7" qs.append(tms) if qs: query = " OR ".join([f"({t})" for t in qs if t]) return MatchTextExpr( self.query_fields, query, 100, {"minimum_should_match": min_match} ), keywords return None, keywords def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7): from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity import numpy as np sims = CosineSimilarity([avec], bvecs) tksim = self.token_similarity(atks, btkss) return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0] def token_similarity(self, atks, btkss): def toDict(tks): d = {} if isinstance(tks, str): tks = tks.split() for t, c in self.tw.weights(tks, preprocess=False): if t not in d: d[t] = 0 d[t] += c return d atks = toDict(atks) btkss = [toDict(tks) for tks in btkss] return [self.similarity(atks, btks) for btks in btkss] def similarity(self, qtwt, dtwt): if isinstance(dtwt, type("")): dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)} if isinstance(qtwt, type("")): qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)} s = 1e-9 for k, v in qtwt.items(): if k in dtwt: s += v # * dtwt[k] q = 1e-9 for k, v in qtwt.items(): q += v return s / q def paragraph(self, content_tks: str, keywords: list = [], keywords_topn=30): if isinstance(content_tks, str): content_tks = [c.strip() for c in content_tks.strip() if c.strip()] tks_w = self.tw.weights(content_tks, preprocess=False) keywords = [f'"{k.strip()}"' for k in keywords] for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]: tk_syns = self.syn.lookup(tk) tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns] tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s] tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns] tk = FulltextQueryer.subSpecialChar(tk) if tk.find(" ") > 0: tk = '"%s"' % tk if tk_syns: tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns) if tk: keywords.append(f"{tk}^{w}") return MatchTextExpr(self.query_fields, " ".join(keywords), 100, {"minimum_should_match": min(3, len(keywords) / 10)})