# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import binascii import os import json import re from copy import deepcopy from timeit import default_timer as timer from api.db import LLMType, ParserType,StatusEnum from api.db.db_models import Dialog, Conversation,DB from api.db.services.common_service import CommonService from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle from api.settings import chat_logger, retrievaler, kg_retrievaler from rag.app.resume import forbidden_select_fields4resume from rag.nlp.search import index_name from rag.utils import rmSpace, num_tokens_from_string, encoder from api.utils.file_utils import get_project_base_directory class DialogService(CommonService): model = Dialog @classmethod @DB.connection_context() def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id , name): chats = cls.model.select() if id: chats = chats.where(cls.model.id == id) if name: chats = chats.where(cls.model.name == name) chats = chats.where( (cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value) ) if desc: chats = chats.order_by(cls.model.getter_by(orderby).desc()) else: chats = chats.order_by(cls.model.getter_by(orderby).asc()) chats = chats.paginate(page_number, items_per_page) return list(chats.dicts()) class ConversationService(CommonService): model = Conversation @classmethod @DB.connection_context() def get_list(cls,dialog_id,page_number, items_per_page, orderby, desc, id , name): sessions = cls.model.select().where(cls.model.dialog_id ==dialog_id) if id: sessions = sessions.where(cls.model.id == id) if name: sessions = sessions.where(cls.model.name == name) if desc: sessions = sessions.order_by(cls.model.getter_by(orderby).desc()) else: sessions = sessions.order_by(cls.model.getter_by(orderby).asc()) sessions = sessions.paginate(page_number, items_per_page) return list(sessions.dicts()) def message_fit_in(msg, max_length=4000): def count(): nonlocal msg tks_cnts = [] for m in msg: tks_cnts.append( {"role": m["role"], "count": num_tokens_from_string(m["content"])}) total = 0 for m in tks_cnts: total += m["count"] return total c = count() if c < max_length: return c, msg msg_ = [m for m in msg[:-1] if m["role"] == "system"] msg_.append(msg[-1]) msg = msg_ c = count() if c < max_length: return c, msg ll = num_tokens_from_string(msg_[0]["content"]) l = num_tokens_from_string(msg_[-1]["content"]) if ll / (ll + l) > 0.8: m = msg_[0]["content"] m = encoder.decode(encoder.encode(m)[:max_length - l]) msg[0]["content"] = m return max_length, msg m = msg_[1]["content"] m = encoder.decode(encoder.encode(m)[:max_length - l]) msg[1]["content"] = m return max_length, msg def llm_id2llm_type(llm_id): llm_id = llm_id.split("@")[0] fnm = os.path.join(get_project_base_directory(), "conf") llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r")) for llm_factory in llm_factories["factory_llm_infos"]: for llm in llm_factory["llm"]: if llm_id == llm["llm_name"]: return llm["model_type"].strip(",")[-1] def chat(dialog, messages, stream=True, **kwargs): assert messages[-1]["role"] == "user", "The last content of this conversation is not from user." st = timer() tmp = dialog.llm_id.split("@") fid = None llm_id = tmp[0] if len(tmp)>1: fid = tmp[1] llm = LLMService.query(llm_name=llm_id) if not fid else LLMService.query(llm_name=llm_id, fid=fid) if not llm: llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not fid else \ TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=fid) if not llm: raise LookupError("LLM(%s) not found" % dialog.llm_id) max_tokens = 8192 else: max_tokens = llm[0].max_tokens kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids) embd_nms = list(set([kb.embd_id for kb in kbs])) if len(embd_nms) != 1: yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} is_kg = all([kb.parser_id == ParserType.KG for kb in kbs]) retr = retrievaler if not is_kg else kg_retrievaler questions = [m["content"] for m in messages if m["role"] == "user"][-3:] attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None if "doc_ids" in messages[-1]: attachments = messages[-1]["doc_ids"] for m in messages[:-1]: if "doc_ids" in m: attachments.extend(m["doc_ids"]) embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0]) if llm_id2llm_type(dialog.llm_id) == "image2text": chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id) else: chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) prompt_config = dialog.prompt_config field_map = KnowledgebaseService.get_field_map(dialog.kb_ids) tts_mdl = None if prompt_config.get("tts"): tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS) # try to use sql if field mapping is good to go if field_map: chat_logger.info("Use SQL to retrieval:{}".format(questions[-1])) ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True)) if ans: yield ans return for p in prompt_config["parameters"]: if p["key"] == "knowledge": continue if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"]) if p["key"] not in kwargs: prompt_config["system"] = prompt_config["system"].replace( "{%s}" % p["key"], " ") if len(questions) > 1 and prompt_config.get("refine_multiturn"): questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)] else: questions = questions[-1:] rerank_mdl = None if dialog.rerank_id: rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id) for _ in range(len(questions) // 2): questions.append(questions[-1]) if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]: kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} else: if prompt_config.get("keyword", False): questions[-1] += keyword_extraction(chat_mdl, questions[-1]) tenant_ids = list(set([kb.tenant_id for kb in kbs])) kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold, dialog.vector_similarity_weight, doc_ids=attachments, top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl) knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] chat_logger.info( "{}->{}".format(" ".join(questions), "\n->".join(knowledges))) retrieval_tm = timer() if not knowledges and prompt_config.get("empty_response"): empty_res = prompt_config["empty_response"] yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)} return {"answer": prompt_config["empty_response"], "reference": kbinfos} kwargs["knowledge"] = "\n\n------\n\n".join(knowledges) gen_conf = dialog.llm_setting msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}] msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]) used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97)) assert len(msg) >= 2, f"message_fit_in has bug: {msg}" prompt = msg[0]["content"] prompt += "\n\n### Query:\n%s" % " ".join(questions) if "max_tokens" in gen_conf: gen_conf["max_tokens"] = min( gen_conf["max_tokens"], max_tokens - used_token_count) def decorate_answer(answer): nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_tm refs = [] if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)): answer, idx = retr.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=1 - dialog.vector_similarity_weight, vtweight=dialog.vector_similarity_weight) idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) recall_docs = [ d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] if not recall_docs: recall_docs = kbinfos["doc_aggs"] kbinfos["doc_aggs"] = recall_docs refs = deepcopy(kbinfos) for c in refs["chunks"]: if c.get("vector"): del c["vector"] if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" done_tm = timer() prompt += "\n\n### Elapsed\n - Retrieval: %.1f ms\n - LLM: %.1f ms"%((retrieval_tm-st)*1000, (done_tm-st)*1000) return {"answer": answer, "reference": refs, "prompt": prompt} if stream: last_ans = "" answer = "" for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf): answer = ans delta_ans = ans[len(last_ans):] if num_tokens_from_string(delta_ans) < 16: continue last_ans = answer yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} delta_ans = answer[len(last_ans):] if delta_ans: yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} yield decorate_answer(answer) else: answer = chat_mdl.chat(prompt, msg[1:], gen_conf) chat_logger.info("User: {}|Assistant: {}".format( msg[-1]["content"], answer)) res = decorate_answer(answer) res["audio_binary"] = tts(tts_mdl, answer) yield res def use_sql(question, field_map, tenant_id, chat_mdl, quota=True): sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。" user_promt = """ 表名:{}; 数据库表字段说明如下: {} 问题如下: {} 请写出SQL, 且只要SQL,不要有其他说明及文字。 """.format( index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question ) tried_times = 0 def get_table(): nonlocal sys_prompt, user_promt, question, tried_times sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], { "temperature": 0.06}) print(user_promt, sql) chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}") sql = re.sub(r"[\r\n]+", " ", sql.lower()) sql = re.sub(r".*select ", "select ", sql.lower()) sql = re.sub(r" +", " ", sql) sql = re.sub(r"([;;]|```).*", "", sql) if sql[:len("select ")] != "select ": return None, None if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()): if sql[:len("select *")] != "select *": sql = "select doc_id,docnm_kwd," + sql[6:] else: flds = [] for k in field_map.keys(): if k in forbidden_select_fields4resume: continue if len(flds) > 11: break flds.append(k) sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:] print(f"“{question}” get SQL(refined): {sql}") chat_logger.info(f"“{question}” get SQL(refined): {sql}") tried_times += 1 return retrievaler.sql_retrieval(sql, format="json"), sql tbl, sql = get_table() if tbl is None: return None if tbl.get("error") and tried_times <= 2: user_promt = """ 表名:{}; 数据库表字段说明如下: {} 问题如下: {} 你上一次给出的错误SQL如下: {} 后台报错如下: {} 请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。 """.format( index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"] ) tbl, sql = get_table() chat_logger.info("TRY it again: {}".format(sql)) chat_logger.info("GET table: {}".format(tbl)) print(tbl) if tbl.get("error") or len(tbl["rows"]) == 0: return None docid_idx = set([ii for ii, c in enumerate( tbl["columns"]) if c["name"] == "doc_id"]) docnm_idx = set([ii for ii, c in enumerate( tbl["columns"]) if c["name"] == "docnm_kwd"]) clmn_idx = [ii for ii in range( len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)] # compose markdown table clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|") line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \ ("|------|" if docid_idx and docid_idx else "") rows = ["|" + "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]] if quota: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows) if not docid_idx or not docnm_idx: chat_logger.warning("SQL missing field: " + sql) return { "answer": "\n".join([clmns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt } docid_idx = list(docid_idx)[0] docnm_idx = list(docnm_idx)[0] doc_aggs = {} for r in tbl["rows"]: if r[docid_idx] not in doc_aggs: doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0} doc_aggs[r[docid_idx]]["count"] += 1 return { "answer": "\n".join([clmns, line, rows]), "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]], "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}, "prompt": sys_prompt } def relevant(tenant_id, llm_id, question, contents: list): if llm_id2llm_type(llm_id) == "image2text": chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) else: chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) prompt = """ You are a grader assessing relevance of a retrieved document to a user question. It does not need to be a stringent test. The goal is to filter out erroneous retrievals. If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. No other words needed except 'yes' or 'no'. """ if not contents:return False contents = "Documents: \n" + " - ".join(contents) contents = f"Question: {question}\n" + contents if num_tokens_from_string(contents) >= chat_mdl.max_length - 4: contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4]) ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01}) if ans.lower().find("yes") >= 0: return True return False def rewrite(tenant_id, llm_id, question): if llm_id2llm_type(llm_id) == "image2text": chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) else: chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) prompt = """ You are an expert at query expansion to generate a paraphrasing of a question. I can't retrieval relevant information from the knowledge base by using user's question directly. You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase, writing the abbreviation in its entirety, adding some extra descriptions or explanations, changing the way of expression, translating the original question into another language (English/Chinese), etc. And return 5 versions of question and one is from translation. Just list the question. No other words are needed. """ ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8}) return ans def keyword_extraction(chat_mdl, content, topn=3): prompt = f""" Role: You're a text analyzer. Task: extract the most important keywords/phrases of a given piece of text content. Requirements: - Summarize the text content, and give top {topn} important keywords/phrases. - The keywords MUST be in language of the given piece of text content. - The keywords are delimited by ENGLISH COMMA. - Keywords ONLY in output. ### Text Content {content} """ msg = [ {"role": "system", "content": prompt}, {"role": "user", "content": "Output: "} ] _, msg = message_fit_in(msg, chat_mdl.max_length) kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2}) if isinstance(kwd, tuple): kwd = kwd[0] if kwd.find("**ERROR**") >=0: return "" return kwd def question_proposal(chat_mdl, content, topn=3): prompt = f""" Role: You're a text analyzer. Task: propose {topn} questions about a given piece of text content. Requirements: - Understand and summarize the text content, and propose top {topn} important questions. - The questions SHOULD NOT have overlapping meanings. - The questions SHOULD cover the main content of the text as much as possible. - The questions MUST be in language of the given piece of text content. - One question per line. - Question ONLY in output. ### Text Content {content} """ msg = [ {"role": "system", "content": prompt}, {"role": "user", "content": "Output: "} ] _, msg = message_fit_in(msg, chat_mdl.max_length) kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2}) if isinstance(kwd, tuple): kwd = kwd[0] if kwd.find("**ERROR**") >= 0: return "" return kwd def full_question(tenant_id, llm_id, messages): if llm_id2llm_type(llm_id) == "image2text": chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) else: chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) conv = [] for m in messages: if m["role"] not in ["user", "assistant"]: continue conv.append("{}: {}".format(m["role"].upper(), m["content"])) conv = "\n".join(conv) prompt = f""" Role: A helpful assistant Task: Generate a full user question that would follow the conversation. Requirements & Restrictions: - Text generated MUST be in the same language of the original user's question. - If the user's latest question is completely, don't do anything, just return the original question. - DON'T generate anything except a refined question. ###################### -Examples- ###################### # Example 1 ## Conversation USER: What is the name of Donald Trump's father? ASSISTANT: Fred Trump. USER: And his mother? ############### Output: What's the name of Donald Trump's mother? ------------ # Example 2 ## Conversation USER: What is the name of Donald Trump's father? ASSISTANT: Fred Trump. USER: And his mother? ASSISTANT: Mary Trump. User: What's her full name? ############### Output: What's the full name of Donald Trump's mother Mary Trump? ###################### # Real Data ## Conversation {conv} ############### """ ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2}) return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"] def tts(tts_mdl, text): if not tts_mdl or not text: return bin = b"" for chunk in tts_mdl.tts(text): bin += chunk return binascii.hexlify(bin).decode("utf-8") def ask(question, kb_ids, tenant_id): kbs = KnowledgebaseService.get_by_ids(kb_ids) embd_nms = list(set([kb.embd_id for kb in kbs])) is_kg = all([kb.parser_id == ParserType.KG for kb in kbs]) retr = retrievaler if not is_kg else kg_retrievaler embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0]) chat_mdl = LLMBundle(tenant_id, LLMType.CHAT) max_tokens = chat_mdl.max_length kbinfos = retr.retrieval(question, embd_mdl, tenant_id, kb_ids, 1, 12, 0.1, 0.3, aggs=False) knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] used_token_count = 0 for i, c in enumerate(knowledges): used_token_count += num_tokens_from_string(c) if max_tokens * 0.97 < used_token_count: knowledges = knowledges[:i] break prompt = """ Role: You're a smart assistant. Your name is Miss R. Task: Summarize the information from knowledge bases and answer user's question. Requirements and restriction: - DO NOT make things up, especially for numbers. - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided. - Answer with markdown format text. - Answer in language of user's question. - DO NOT make things up, especially for numbers. ### Information from knowledge bases %s The above is information from knowledge bases. """%"\n".join(knowledges) msg = [{"role": "user", "content": question}] def decorate_answer(answer): nonlocal knowledges, kbinfos, prompt answer, idx = retr.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3) idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) recall_docs = [ d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] if not recall_docs: recall_docs = kbinfos["doc_aggs"] kbinfos["doc_aggs"] = recall_docs refs = deepcopy(kbinfos) for c in refs["chunks"]: if c.get("vector"): del c["vector"] if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" return {"answer": answer, "reference": refs} answer = "" for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}): answer = ans yield {"answer": answer, "reference": {}} yield decorate_answer(answer)