# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import re from collections import Counter from copy import deepcopy import cv2 import numpy as np from huggingface_hub import snapshot_download from api.utils.file_utils import get_project_base_directory from deepdoc.vision import Recognizer from deepdoc.vision.operators import nms class LayoutRecognizer(Recognizer): labels = [ "_background_", "Text", "Title", "Figure", "Figure caption", "Table", "Table caption", "Header", "Footer", "Reference", "Equation", ] def __init__(self, domain): try: model_dir = os.path.join( get_project_base_directory(), "rag/res/deepdoc") super().__init__(self.labels, domain, model_dir) except Exception: model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False) super().__init__(self.labels, domain, model_dir) self.garbage_layouts = ["footer", "header", "reference"] def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True): def __is_garbage(b): patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", "(资料|数据)来源[::]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}", "\\(cid *: *[0-9]+ *\\)" ] return any([re.search(p, b["text"]) for p in patt]) layouts = super().__call__(image_list, thr, batch_size) # save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7) assert len(image_list) == len(ocr_res) # Tag layout type boxes = [] assert len(image_list) == len(layouts) garbages = {} page_layout = [] for pn, lts in enumerate(layouts): bxs = ocr_res[pn] lts = [{"type": b["type"], "score": float(b["score"]), "x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor, "top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor, "page_number": pn, } for b in lts if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts] lts = self.sort_Y_firstly(lts, np.mean( [lt["bottom"] - lt["top"] for lt in lts]) / 2) lts = self.layouts_cleanup(bxs, lts) page_layout.append(lts) # Tag layout type, layouts are ready def findLayout(ty): nonlocal bxs, lts, self lts_ = [lt for lt in lts if lt["type"] == ty] i = 0 while i < len(bxs): if bxs[i].get("layout_type"): i += 1 continue if __is_garbage(bxs[i]): bxs.pop(i) continue ii = self.find_overlapped_with_threashold(bxs[i], lts_, thr=0.4) if ii is None: # belong to nothing bxs[i]["layout_type"] = "" i += 1 continue lts_[ii]["visited"] = True keep_feats = [ lts_[ ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor, lts_[ ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor, ] if drop and lts_[ ii]["type"] in self.garbage_layouts and not any(keep_feats): if lts_[ii]["type"] not in garbages: garbages[lts_[ii]["type"]] = [] garbages[lts_[ii]["type"]].append(bxs[i]["text"]) bxs.pop(i) continue bxs[i]["layoutno"] = f"{ty}-{ii}" bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[ ii]["type"] != "equation" else "figure" i += 1 for lt in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]: findLayout(lt) # add box to figure layouts which has not text box for i, lt in enumerate( [lt for lt in lts if lt["type"] in ["figure", "equation"]]): if lt.get("visited"): continue lt = deepcopy(lt) del lt["type"] lt["text"] = "" lt["layout_type"] = "figure" lt["layoutno"] = f"figure-{i}" bxs.append(lt) boxes.extend(bxs) ocr_res = boxes garbag_set = set() for k in garbages.keys(): garbages[k] = Counter(garbages[k]) for g, c in garbages[k].items(): if c > 1: garbag_set.add(g) ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set] return ocr_res, page_layout def forward(self, image_list, thr=0.7, batch_size=16): return super().__call__(image_list, thr, batch_size) class LayoutRecognizer4YOLOv10(LayoutRecognizer): labels = [ "title", "Text", "Reference", "Figure", "Figure caption", "Table", "Table caption", "Table caption", "Equation", "Figure caption", ] def __init__(self, domain): domain = "layout" super().__init__(domain) self.auto = False self.scaleFill = False self.scaleup = True self.stride = 32 self.center = True def preprocess(self, image_list): inputs = [] new_shape = self.input_shape # height, width for img in image_list: shape = img.shape[:2]# current shape [height, width] # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # Compute padding new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding dw /= 2 # divide padding into 2 sides dh /= 2 ww, hh = new_unpad img = np.array(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).astype(np.float32) img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) ) # add border img /= 255.0 img = img.transpose(2, 0, 1) img = img[np.newaxis, :, :, :].astype(np.float32) inputs.append({self.input_names[0]: img, "scale_factor": [shape[1]/ww, shape[0]/hh, dw, dh]}) return inputs def postprocess(self, boxes, inputs, thr): thr = 0.08 boxes = np.squeeze(boxes) scores = boxes[:, 4] boxes = boxes[scores > thr, :] scores = scores[scores > thr] if len(boxes) == 0: return [] class_ids = boxes[:, -1].astype(int) boxes = boxes[:, :4] boxes[:, 0] -= inputs["scale_factor"][2] boxes[:, 2] -= inputs["scale_factor"][2] boxes[:, 1] -= inputs["scale_factor"][3] boxes[:, 3] -= inputs["scale_factor"][3] input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]]) boxes = np.multiply(boxes, input_shape, dtype=np.float32) unique_class_ids = np.unique(class_ids) indices = [] for class_id in unique_class_ids: class_indices = np.where(class_ids == class_id)[0] class_boxes = boxes[class_indices, :] class_scores = scores[class_indices] class_keep_boxes = nms(class_boxes, class_scores, 0.45) indices.extend(class_indices[class_keep_boxes]) return [{ "type": self.label_list[class_ids[i]].lower(), "bbox": [float(t) for t in boxes[i].tolist()], "score": float(scores[i]) } for i in indices]