# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABC import pandas as pd import pywencai from agent.component.base import ComponentBase, ComponentParamBase class WenCaiParam(ComponentParamBase): """ Define the WenCai component parameters. """ def __init__(self): super().__init__() self.top_n = 10 self.query_type = "stock" def check(self): self.check_positive_integer(self.top_n, "Top N") self.check_valid_value(self.query_type, "Query type", ['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance', 'futures', 'lccp', 'foreign_exchange']) class WenCai(ComponentBase, ABC): component_name = "WenCai" def _run(self, history, **kwargs): ans = self.get_input() ans = ",".join(ans["content"]) if "content" in ans else "" if not ans: return WenCai.be_output("") try: wencai_res = [] res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n) if isinstance(res, pd.DataFrame): wencai_res.append({"content": res.to_markdown()}) if isinstance(res, dict): for item in res.items(): if isinstance(item[1], list): wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()}) continue if isinstance(item[1], str): wencai_res.append({"content": item[0] + "\n" + item[1]}) continue if isinstance(item[1], dict): if "meta" in item[1].keys(): continue wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()}) continue wencai_res.append({"content": item[0] + "\n" + str(item[1])}) except Exception as e: return WenCai.be_output("**ERROR**: " + str(e)) if not wencai_res: return WenCai.be_output("") return pd.DataFrame(wencai_res)