# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from datetime import date from enum import IntEnum, Enum import rag.utils.es_conn import rag.utils.infinity_conn import rag.utils from rag.nlp import search from graphrag import search as kg_search from api.utils import get_base_config, decrypt_database_config API_VERSION = "v1" RAG_FLOW_SERVICE_NAME = "ragflow" LIGHTEN = int(os.environ.get('LIGHTEN', "0")) REQUEST_WAIT_SEC = 2 REQUEST_MAX_WAIT_SEC = 300 LLM = get_base_config("user_default_llm", {}) LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen") LLM_BASE_URL = LLM.get("base_url") CHAT_MDL = EMBEDDING_MDL = RERANK_MDL = ASR_MDL = IMAGE2TEXT_MDL = "" if not LIGHTEN: default_llm = { "Tongyi-Qianwen": { "chat_model": "qwen-plus", "embedding_model": "text-embedding-v2", "image2text_model": "qwen-vl-max", "asr_model": "paraformer-realtime-8k-v1", }, "OpenAI": { "chat_model": "gpt-3.5-turbo", "embedding_model": "text-embedding-ada-002", "image2text_model": "gpt-4-vision-preview", "asr_model": "whisper-1", }, "Azure-OpenAI": { "chat_model": "gpt-35-turbo", "embedding_model": "text-embedding-ada-002", "image2text_model": "gpt-4-vision-preview", "asr_model": "whisper-1", }, "ZHIPU-AI": { "chat_model": "glm-3-turbo", "embedding_model": "embedding-2", "image2text_model": "glm-4v", "asr_model": "", }, "Ollama": { "chat_model": "qwen-14B-chat", "embedding_model": "flag-embedding", "image2text_model": "", "asr_model": "", }, "Moonshot": { "chat_model": "moonshot-v1-8k", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "DeepSeek": { "chat_model": "deepseek-chat", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "VolcEngine": { "chat_model": "", "embedding_model": "", "image2text_model": "", "asr_model": "", }, "BAAI": { "chat_model": "", "embedding_model": "BAAI/bge-large-zh-v1.5", "image2text_model": "", "asr_model": "", "rerank_model": "BAAI/bge-reranker-v2-m3", } } if LLM_FACTORY: CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}" ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}" IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}" EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI" RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI" API_KEY = LLM.get("api_key", "") PARSERS = LLM.get( "parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email") HOST = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1") HTTP_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port") SECRET_KEY = get_base_config( RAG_FLOW_SERVICE_NAME, {}).get("secret_key", str(date.today())) DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql') DATABASE = decrypt_database_config(name=DATABASE_TYPE) # authentication AUTHENTICATION_CONF = get_base_config("authentication", {}) # client CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get( "client", {}).get( "switch", False) HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key") GITHUB_OAUTH = get_base_config("oauth", {}).get("github") FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu") DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch") if DOC_ENGINE == "elasticsearch": docStoreConn = rag.utils.es_conn.ESConnection() elif DOC_ENGINE == "infinity": docStoreConn = rag.utils.infinity_conn.InfinityConnection() else: raise Exception(f"Not supported doc engine: {DOC_ENGINE}") retrievaler = search.Dealer(docStoreConn) kg_retrievaler = kg_search.KGSearch(docStoreConn) class CustomEnum(Enum): @classmethod def valid(cls, value): try: cls(value) return True except BaseException: return False @classmethod def values(cls): return [member.value for member in cls.__members__.values()] @classmethod def names(cls): return [member.name for member in cls.__members__.values()] class PythonDependenceName(CustomEnum): Rag_Source_Code = "python" Python_Env = "miniconda" class ModelStorage(CustomEnum): REDIS = "redis" MYSQL = "mysql" class RetCode(IntEnum, CustomEnum): SUCCESS = 0 NOT_EFFECTIVE = 10 EXCEPTION_ERROR = 100 ARGUMENT_ERROR = 101 DATA_ERROR = 102 OPERATING_ERROR = 103 CONNECTION_ERROR = 105 RUNNING = 106 PERMISSION_ERROR = 108 AUTHENTICATION_ERROR = 109 UNAUTHORIZED = 401 SERVER_ERROR = 500 FORBIDDEN = 403 NOT_FOUND = 404