# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from flask import request from flask_login import login_required from api.db.services.dialog_service import DialogService, ConversationService from api.db import LLMType from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import LLMService, LLMBundle from api.settings import access_logger, stat_logger, retrievaler, chat_logger from api.utils.api_utils import server_error_response, get_data_error_result, validate_request from api.utils import get_uuid from api.utils.api_utils import get_json_result from rag.app.resume import forbidden_select_fields4resume from rag.nlp.search import index_name from rag.utils import num_tokens_from_string, encoder, rmSpace @manager.route('/set', methods=['POST']) @login_required def set_conversation(): req = request.json conv_id = req.get("conversation_id") if conv_id: del req["conversation_id"] try: if not ConversationService.update_by_id(conv_id, req): return get_data_error_result(retmsg="Conversation not found!") e, conv = ConversationService.get_by_id(conv_id) if not e: return get_data_error_result( retmsg="Fail to update a conversation!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) try: e, dia = DialogService.get_by_id(req["dialog_id"]) if not e: return get_data_error_result(retmsg="Dialog not found") conv = { "id": get_uuid(), "dialog_id": req["dialog_id"], "name": req.get("name", "New conversation"), "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}] } ConversationService.save(**conv) e, conv = ConversationService.get_by_id(conv["id"]) if not e: return get_data_error_result(retmsg="Fail to new a conversation!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) @manager.route('/get', methods=['GET']) @login_required def get(): conv_id = request.args["conversation_id"] try: e, conv = ConversationService.get_by_id(conv_id) if not e: return get_data_error_result(retmsg="Conversation not found!") conv = conv.to_dict() return get_json_result(data=conv) except Exception as e: return server_error_response(e) @manager.route('/rm', methods=['POST']) @login_required def rm(): conv_ids = request.json["conversation_ids"] try: for cid in conv_ids: ConversationService.delete_by_id(cid) return get_json_result(data=True) except Exception as e: return server_error_response(e) @manager.route('/list', methods=['GET']) @login_required def list_convsersation(): dialog_id = request.args["dialog_id"] try: convs = ConversationService.query( dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True) convs = [d.to_dict() for d in convs] return get_json_result(data=convs) except Exception as e: return server_error_response(e) def message_fit_in(msg, max_length=4000): def count(): nonlocal msg tks_cnts = [] for m in msg: tks_cnts.append( {"role": m["role"], "count": num_tokens_from_string(m["content"])}) total = 0 for m in tks_cnts: total += m["count"] return total c = count() if c < max_length: return c, msg msg_ = [m for m in msg[:-1] if m.role == "system"] msg_.append(msg[-1]) msg = msg_ c = count() if c < max_length: return c, msg ll = num_tokens_from_string(msg_[0].content) l = num_tokens_from_string(msg_[-1].content) if ll / (ll + l) > 0.8: m = msg_[0].content m = encoder.decode(encoder.encode(m)[:max_length - l]) msg[0].content = m return max_length, msg m = msg_[1].content m = encoder.decode(encoder.encode(m)[:max_length - l]) msg[1].content = m return max_length, msg @manager.route('/completion', methods=['POST']) @login_required @validate_request("conversation_id", "messages") def completion(): req = request.json msg = [] for m in req["messages"]: if m["role"] == "system": continue if m["role"] == "assistant" and not msg: continue msg.append({"role": m["role"], "content": m["content"]}) try: e, conv = ConversationService.get_by_id(req["conversation_id"]) if not e: return get_data_error_result(retmsg="Conversation not found!") conv.message.append(msg[-1]) e, dia = DialogService.get_by_id(conv.dialog_id) if not e: return get_data_error_result(retmsg="Dialog not found!") del req["conversation_id"] del req["messages"] ans = chat(dia, msg, **req) if not conv.reference: conv.reference = [] conv.reference.append(ans["reference"]) conv.message.append({"role": "assistant", "content": ans["answer"]}) ConversationService.update_by_id(conv.id, conv.to_dict()) return get_json_result(data=ans) except Exception as e: return server_error_response(e) def chat(dialog, messages, **kwargs): assert messages[-1]["role"] == "user", "The last content of this conversation is not from user." llm = LLMService.query(llm_name=dialog.llm_id) if not llm: raise LookupError("LLM(%s) not found" % dialog.llm_id) llm = llm[0] questions = [m["content"] for m in messages if m["role"] == "user"] embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING) chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) field_map = KnowledgebaseService.get_field_map(dialog.kb_ids) # try to use sql if field mapping is good to go if field_map: chat_logger.info("Use SQL to retrieval:{}".format(questions[-1])) ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl) if ans: return ans prompt_config = dialog.prompt_config for p in prompt_config["parameters"]: if p["key"] == "knowledge": continue if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"]) if p["key"] not in kwargs: prompt_config["system"] = prompt_config["system"].replace( "{%s}" % p["key"], " ") for _ in range(len(questions) // 2): questions.append(questions[-1]) if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]: kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} else: kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold, dialog.vector_similarity_weight, top=1024, aggs=False) knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] chat_logger.info( "{}->{}".format(" ".join(questions), "\n->".join(knowledges))) if not knowledges and prompt_config.get("empty_response"): return { "answer": prompt_config["empty_response"], "reference": kbinfos} kwargs["knowledge"] = "\n".join(knowledges) gen_conf = dialog.llm_setting msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"] used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97)) if "max_tokens" in gen_conf: gen_conf["max_tokens"] = min( gen_conf["max_tokens"], llm.max_tokens - used_token_count) answer = chat_mdl.chat( prompt_config["system"].format( **kwargs), msg, gen_conf) chat_logger.info("User: {}|Assistant: {}".format( msg[-1]["content"], answer)) if knowledges: answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=1 - dialog.vector_similarity_weight, vtweight=dialog.vector_similarity_weight) idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) kbinfos["doc_aggs"] = [ d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] for c in kbinfos["chunks"]: if c.get("vector"): del c["vector"] return {"answer": answer, "reference": kbinfos} def use_sql(question, field_map, tenant_id, chat_mdl): sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。" user_promt = """ 表名:{}; 数据库表字段说明如下: {} 问题如下: {} 请写出SQL, 且只要SQL,不要有其他说明及文字。 """.format( index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question ) tried_times = 0 def get_table(): nonlocal sys_prompt, user_promt, question, tried_times sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], { "temperature": 0.06}) print(user_promt, sql) chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}") sql = re.sub(r"[\r\n]+", " ", sql.lower()) sql = re.sub(r".*select ", "select ", sql.lower()) sql = re.sub(r" +", " ", sql) sql = re.sub(r"([;;]|```).*", "", sql) if sql[:len("select ")] != "select ": return None, None if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()): if sql[:len("select *")] != "select *": sql = "select doc_id,docnm_kwd," + sql[6:] else: flds = [] for k in field_map.keys(): if k in forbidden_select_fields4resume: continue if len(flds) > 11: break flds.append(k) sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:] print(f"“{question}” get SQL(refined): {sql}") chat_logger.info(f"“{question}” get SQL(refined): {sql}") tried_times += 1 return retrievaler.sql_retrieval(sql, format="json"), sql tbl, sql = get_table() if tbl is None: return None if tbl.get("error") and tried_times <= 2: user_promt = """ 表名:{}; 数据库表字段说明如下: {} 问题如下: {} 你上一次给出的错误SQL如下: {} 后台报错如下: {} 请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。 """.format( index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"] ) tbl, sql = get_table() chat_logger.info("TRY it again: {}".format(sql)) chat_logger.info("GET table: {}".format(tbl)) print(tbl) if tbl.get("error") or len(tbl["rows"]) == 0: return None docid_idx = set([ii for ii, c in enumerate( tbl["columns"]) if c["name"] == "doc_id"]) docnm_idx = set([ii for ii, c in enumerate( tbl["columns"]) if c["name"] == "docnm_kwd"]) clmn_idx = [ii for ii in range( len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)] # compose markdown table clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|") line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \ ("|------|" if docid_idx and docid_idx else "") rows = ["|" + "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]] if not docid_idx or not docnm_idx: chat_logger.warning("SQL missing field: " + sql) return "\n".join([clmns, line, "\n".join(rows)]), [] rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows) docid_idx = list(docid_idx)[0] docnm_idx = list(docnm_idx)[0] doc_aggs = {} for r in tbl["rows"]: if r[docid_idx] not in doc_aggs: doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0} doc_aggs[r[docid_idx]]["count"] += 1 return { "answer": "\n".join([clmns, line, rows]), "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]], "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]} }